Nonsmooth Analysis and Numerical Optimization Techniques beyond Convexity
超越凸性的非光滑分析和数值优化技术
基本信息
- 批准号:1716057
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Convex analysis and optimization play a crucial role by providing the mathematical foundation and methods for solving problems in a variety of fields. At the same time, recent applications in these fields require optimization techniques beyond convexity. Although convex optimization techniques and numerical algorithms have been the topics of extensive research for more than 50 years, solving large-scale optimization problems without the presence of convexity remains a challenge. In this project, the principal investigator aims to develop new theoretical results in convex and nonsmooth analysis, and new numerical algorithms, for the optimization of nonconvex functions that are not necessarily differentiable, especially functions that are the difference of convex functions. Optimization problems of this sort arise in multi-facility location, clustering, machine learning, compressed sensing, and imaging applications. The investigator and his colleagues develop, implement, and test numerical algorithms for solving such problems. With no requirement on differentiability and convexity, these numerical algorithms bring new methods for solving complex optimization problems in different fields of application.This project aims to develop new theory of nonsmooth analysis and optimization methods for solving optimization problems without imposing conditions of differentiability or convexity. Based on a variational geometric approach, the first goal of this project is to develop new results in nonsmooth analysis to deal with optimization problems in which the objective functions are nondifferentiable and nonconvex. This approach provides a systematic development of nonsmooth analysis, making it accessible to researchers from different fields. The second goal of the project is to develop numerical algorithms for solving nonconvex optimization problems, especially those whose objective functions are representable as differences of convex functions, and to apply them to problems in multi-facility location, clustering and hierarchical clustering, machine learning, compressed sensing, and imaging. The investigator and his colleagues particularly focus on problems that involve different norms or constraints, requiring advances in smoothing and initialization techniques. They address the important issues of existence and uniqueness of optimal solutions of the models, initialization techniques based on global optimization methods, implementation of the algorithms for comparison and testing on artificial and real data sets, and the convergence rate of the algorithms. The results contribute to the development of nonsmooth analysis and its use in building and analyzing numerical algorithms for nonsmooth optimization problems that are not convex.
凸分析和优化通过为解决各种领域的问题提供数学基础和方法而发挥着至关重要的作用。 同时,最近在这些领域的应用需要超越凸性的优化技术。 虽然凸优化技术和数值算法已经被广泛研究了50多年,但在不存在凸性的情况下解决大规模优化问题仍然是一个挑战。 在这个项目中,主要研究者的目的是开发新的理论成果,在凸和非光滑分析,和新的数值算法,为非凸函数的优化,不一定是可微的,特别是功能是凸函数的差异。 这类优化问题出现在多设施定位,聚类,机器学习,压缩传感和成像应用中。 研究人员和他的同事开发,实施和测试数值算法来解决这些问题。 这些数值算法不要求可微性和凸性,为解决不同应用领域的复杂优化问题带来了新的方法。本项目旨在发展新的非光滑分析理论和优化方法,以解决优化问题,而无需施加可微性或凸性条件。 基于变分几何方法,该项目的第一个目标是发展非光滑分析的新结果,以处理目标函数不可微且非凸的优化问题。 这种方法提供了一个系统的发展,非光滑分析,使它可以从不同领域的研究人员。 该项目的第二个目标是开发用于解决非凸优化问题的数值算法,特别是那些目标函数可表示为凸函数差异的问题,并将其应用于多设施定位,聚类和分层聚类,机器学习,压缩传感和成像等问题。 研究者和他的同事们特别关注涉及不同规范或约束的问题,需要平滑和初始化技术的进步。 他们解决的重要问题的存在性和唯一性的最优解的模型,初始化技术的基础上的全局优化方法,实施的算法进行比较和测试的人工和真实的数据集,和算法的收敛速度。 结果有助于非光滑分析的发展,并使用其在建设和分析非光滑优化问题的数值算法是不凸的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solving k-center problems involving sets based on optimization techniques
- DOI:10.1007/s10898-019-00834-6
- 发表时间:2020-01
- 期刊:
- 影响因子:1.8
- 作者:N. T. An;N. M. Nam;X. Qin
- 通讯作者:N. T. An;N. M. Nam;X. Qin
Bornological Coderivative and Subdifferential Calculus in Smooth Banach Spaces
- DOI:10.1007/s11228-018-0503-6
- 发表时间:2019-01
- 期刊:
- 影响因子:1.6
- 作者:N. M. Nam;Hung M. Phan;B. Wang
- 通讯作者:N. M. Nam;Hung M. Phan;B. Wang
A DC programming approach for solving multicast network design problems via the Nesterov smoothing technique
- DOI:10.1007/s10898-018-0671-9
- 发表时间:2017-09
- 期刊:
- 影响因子:1.8
- 作者:W. Geremew;N. M. Nam;Alexander Semenov;V. Boginski;E. Pasiliao
- 通讯作者:W. Geremew;N. M. Nam;Alexander Semenov;V. Boginski;E. Pasiliao
Clustering and multifacility location with constraints via distance function penalty methods and dc programming
通过距离函数惩罚方法和直流编程进行约束的聚类和多设施定位
- DOI:10.1080/02331934.2018.1510498
- 发表时间:2018
- 期刊:
- 影响因子:2.2
- 作者:Nam, Nguyen Mau;An, Nguyen Thai;Reynolds, Sam;Tran, Tuyen
- 通讯作者:Tran, Tuyen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mau Nguyen其他文献
Mau Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mau Nguyen', 18)}}的其他基金
Variational Analysis of Optimal Value Functions and Applications to Nonsmooth Optimization
最优值函数的变分分析及其在非光滑优化中的应用
- 批准号:
1411817 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Comprehensive numerical analysis of ICRF heating with fast-ion-driven instabilities in toroidal plasmas
对环形等离子体中快速离子驱动不稳定性的 ICRF 加热进行全面数值分析
- 批准号:
24K17032 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
- 批准号:
DP220100937 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Discovery Projects
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Reconsideration of a 3-D sintering model by numerical analysis of shape and alignment parameters of metal powders during the sintering process
通过对烧结过程中金属粉末的形状和排列参数进行数值分析来重新考虑 3D 烧结模型
- 批准号:
23K04439 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Real-Time & Generalizable Flood Simulation Emulator using Numerical Analysis and Machine Learning
即时的
- 批准号:
23KJ1685 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Innovative Numerical Theory for Structural Seismic Response Analysis Using Principal Stress Coordinates
使用主应力坐标进行结构地震响应分析的创新数值理论
- 批准号:
23H00199 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308679 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant