Collaborative Research: Spectra of Linear Differential Operators and Turbulence in Integrable Systems
合作研究:线性微分算子谱和可积系统中的湍流
基本信息
- 批准号:1716822
- 负责人:
- 金额:$ 12.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nonlinear evolution equations, also known as soliton equations, are used to model a wide variety of physical systems, such as ocean waves or fiber optic communications. Many such equations, for example the Korteweg-de Vries (KdV) equation for waves in shallow water, have the exciting feature that many of their solutions can be given exactly by an explicit formula. This allows one to develop a precise understanding of the underlying physical processes. However, the range of conditions for which exact solutions are currently known is restrictive, inhibiting the use of such solutions in real-world applications. This project aims to find larger families of exact solutions to soliton equations, and use these solutions to develop statistical theories of the corresponding physical systems. The main goal of the project is to construct and study new families of solutions of soliton equations such as KdV, Nonlinear Schrödinger, and Kadomtsev-Petviashvili. These solutions are obtained as limits of multisoliton solutions, and are bounded and non-decreasing at infinity. They are described by a Riemann-Hilbert problem and can be efficiently computed numerically. The first goal is a rigorous mathematical description of these new solutions. The PIs will investigate to what extent these solutions solve the initial value problem for KdV and related systems. They will study spectral properties of the associated linear operators and construct non-periodic one-dimensional ideal conductors. Finally, the PIs will develop a statistical theory of integrable turbulence for KdV and other soliton equations.
非线性演化方程,也称为孤子方程,用于模拟各种各样的物理系统,如海浪或光纤通信。许多这样的方程,例如关于浅水波浪的Korteweg-de Vries (KdV)方程,有一个令人兴奋的特点,那就是它们的许多解都可以用显式公式精确地给出。这使人们能够对潜在的物理过程有一个精确的理解。然而,目前已知精确解的条件范围是有限的,这限制了此类解在实际应用中的使用。本项目旨在寻找孤子方程更大的精确解族,并利用这些解发展相应物理系统的统计理论。该项目的主要目标是构建和研究新的孤子方程解族,如KdV、非线性Schrödinger和Kadomtsev-Petviashvili。这些解作为多孤子解的极限得到,并且在无穷远处是有界且不递减的。它们用黎曼-希尔伯特问题来描述,可以有效地进行数值计算。第一个目标是对这些新解进行严格的数学描述。pi将调查这些解决方案在多大程度上解决了KdV和相关系统的初值问题。他们将研究相关线性算子的谱性质,并构造非周期一维理想导体。最后,pi将为KdV和其他孤子方程发展可积湍流的统计理论。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Traveling capillary waves on the boundary of a fluid disc
在流体盘边界上行进的毛细管波
- DOI:10.1111/sapm.12435
- 发表时间:2021
- 期刊:
- 影响因子:2.7
- 作者:Dyachenko, Sergey A.
- 通讯作者:Dyachenko, Sergey A.
Dynamics of poles in two-dimensional hydrodynamics with free surface: new constants of motion
- DOI:10.1017/jfm.2019.448
- 发表时间:2018-09
- 期刊:
- 影响因子:3.7
- 作者:A. Dyachenko;S. Dyachenko;P. Lushnikov;Vladimir E Zakharov
- 通讯作者:A. Dyachenko;S. Dyachenko;P. Lushnikov;Vladimir E Zakharov
Short branch cut approximation in two-dimensional hydrodynamics with free surface
自由表面二维流体力学中的短分支切割近似
- DOI:10.1098/rspa.2020.0811
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dyachenko, A. I.;Dyachenko, S. A.;Lushnikov, P. M.;Zakharov, V. E.
- 通讯作者:Zakharov, V. E.
Generalized Primitive Potentials
广义原势
- DOI:10.1134/s1064562420020258
- 发表时间:2020
- 期刊:
- 影响因子:0.6
- 作者:Zakharov, V. E.;Zakharov, D. V.
- 通讯作者:Zakharov, D. V.
Stokes waves with constant vorticity: I. Numerical computation
具有恒定涡度的斯托克斯波:一、数值计算
- DOI:10.1111/sapm.12250
- 发表时间:2019
- 期刊:
- 影响因子:2.7
- 作者:Dyachenko, Sergey A.;Hur, Vera Mikyoung
- 通讯作者:Hur, Vera Mikyoung
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Dyachenko其他文献
Sergey Dyachenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergey Dyachenko', 18)}}的其他基金
Collaborative Research: Spectra of Linear Differential Operators and Turbulence in Integrable Systems
合作研究:线性微分算子谱和可积系统中的湍流
- 批准号:
2039071 - 财政年份:2019
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: MSA: The influence of temperature and resource supply on community size spectra in streams
合作研究:MSA:温度和资源供应对溪流中群落大小谱的影响
- 批准号:
2106067 - 财政年份:2021
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: PLANKTON SIZE SPECTRA AND TROPHIC LINKS IN A DYNAMIC OCEAN
合作研究:动态海洋中的浮游生物大小光谱和营养关系
- 批准号:
2125408 - 财政年份:2021
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: PLANKTON SIZE SPECTRA AND TROPHIC LINKS IN A DYNAMIC OCEAN
合作研究:动态海洋中的浮游生物大小光谱和营养关系
- 批准号:
2125407 - 财政年份:2021
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: MSA: The influence of temperature and resource supply on community size spectra in streams
合作研究:MSA:温度和资源供应对溪流中群落大小谱的影响
- 批准号:
2106068 - 财政年份:2021
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: Spectra of Linear Differential Operators and Turbulence in Integrable Systems
合作研究:线性微分算子谱和可积系统中的湍流
- 批准号:
2039071 - 财政年份:2019
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: Isopycnal Spectra and Stirring on the Submesoscale and Finescale in the Upper Ocean
合作研究:上层海洋亚介尺度和细尺度的等密度光谱和搅拌
- 批准号:
1734160 - 财政年份:2017
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: Isopycnal Spectra and Stirring on the Submesoscale and Finescale in the Upper Ocean
合作研究:上层海洋亚介尺度和细尺度的等密度光谱和搅拌
- 批准号:
1734222 - 财政年份:2017
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: Spectra of Linear Differential Operators and Turbulence in Integrable Systems
合作研究:线性微分算子谱和可积系统中的湍流
- 批准号:
1715323 - 财政年份:2017
- 资助金额:
$ 12.76万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering Brown Dwarf Spectra: Disentangling Temperature, Age, Metallicity, Cloud Signatures
合作研究:破译褐矮星光谱:解开温度、年龄、金属丰度、云特征
- 批准号:
1313132 - 财政年份:2013
- 资助金额:
$ 12.76万 - 项目类别:
Continuing Grant
Collaborative Research: Deciphering Brown Dwarf Spectra: Disentangling Temperature, Age, Metallicity, Cloud Signatures
合作研究:破译褐矮星光谱:解开温度、年龄、金属丰度、云特征
- 批准号:
1313278 - 财政年份:2013
- 资助金额:
$ 12.76万 - 项目类别:
Continuing Grant














{{item.name}}会员




