SHF: Small: Collaborative Research: Discerning and Recommending Context-Specific Best Practices in DevOps-Oriented Software Development

SHF:小型:协作研究:在面向 DevOps 的软件开发中识别和推荐特定于环境的最佳实践

基本信息

  • 批准号:
    1717415
  • 负责人:
  • 金额:
    $ 31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

This project is a scientific study of modern software development practices, which has become known as DevOps. The DevOps culture seeks to bring changes into software production as quickly as possible without compromising software quality, primarily by automating the processes of building, testing, and deploying software. In practice, DevOps engineers can choose between a multitude of tools, including configuration management, cloud-based continuous integration, and automated deployment. Often individual tools are used without much guidance on how they fit in the big picture, and questions about best practices abound in online forums. However, existing answers are typically generic rules of thumb or dated advice, mostly based on third-party experiences, often non-applicable to the specific context. In fact, current empirical evidence on the effectiveness of DevOps practices is much fragmented and incomplete. State-of-the-art decision-making support, based on hard data and informed advice, can help DevOps engineers discern the best choices and practices for their tasks. The proposed research is grounded in contingency theory, where the emphasis is on task context when reasoning about the effectiveness of practices. The goal of this project is to learn and convey structured, context-dependent analytics on best practices in DevOps environments, by mining and analyzing data from the collaborative coding platform GitHub. Using established and novel qualitative and quantitative techniques, this research will: (1) identify clusters of software projects that share similar context variables; and (2) within a context of interest, discern the conditions under which DevOps practices such as continuous integration are most (and least) effective. This will result in actionable knowledge and tool support for DevOps teams, to customize efficient project practices to their environment, as well as advance the theory and practice of software engineering, especially as it relates to distributed, fast paced, automation-heavy environments.
该项目是对现代软件开发实践的科学研究,已被称为DevOps。DevOps文化寻求在不影响软件质量的情况下尽快将更改引入软件生产,主要是通过自动化构建,测试和部署软件的过程。在实践中,DevOps工程师可以在多种工具之间进行选择,包括配置管理、基于云的持续集成和自动化部署。通常,单独的工具在使用时没有太多关于它们如何适应全局的指导,在线论坛中充斥着关于最佳实践的问题。然而,现有的答案通常是通用的经验法则或过时的建议,大多基于第三方的经验,往往不适用于具体情况。事实上,目前关于DevOps实践有效性的经验证据非常分散和不完整。最先进的决策支持,基于硬数据和明智的建议,可以帮助DevOps工程师识别最佳选择和实践,为他们的任务。拟议的研究是基于权变理论,其中的重点是在推理实践的有效性时的任务上下文。该项目的目标是通过挖掘和分析来自协作编码平台GitHub的数据,学习和传达DevOps环境中最佳实践的结构化,上下文相关的分析。使用已建立的和新的定性和定量技术,本研究将:(1)识别共享相似上下文变量的软件项目集群;(2)在感兴趣的上下文中,识别DevOps实践(如持续集成)最有效(和最不有效)的条件。这将为DevOps团队提供可操作的知识和工具支持,为他们的环境定制高效的项目实践,并推进软件工程的理论和实践,特别是当它涉及到分布式,快节奏,自动化程度高的环境时。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A conceptual replication of continuous integration pain points in the context of Travis CI
Tool Choice Matters: JavaScript Quality Assurance Tools and Usage Outcomes in GitHub Projects
Capture the Feature Flag: Detecting Feature Flags in Open-Source
捕获功能标志:检测开源中的功能标志
The impact of continuous integration on other software development practices: A large-scale empirical study
I'm Leaving You, Travis: A Continuous Integration Breakup Story
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bogdan Vasilescu其他文献

GenderMag Improves Discoverability in the Field, Especially for Women: An Multi-Year Case Study of Suggest Edit, a Code Review Feature
GenderMag 提高了该领域的可发现性,尤其是女性:代码审查功能 Suggest Edit 的多年案例研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emerson Murphy;Alberto Elizondo;Ambar Murillo;Marian Harbach;Bogdan Vasilescu;Delphine Carlson;Florian Dessloch
  • 通讯作者:
    Florian Dessloch
Gender, Representation and Online Participation: A Quantitative Study of StackOverflow
性别、代表性和在线参与:StackOverflow 的定量研究
Stress and Burnout in Open Source: Toward Finding, Understanding, and Mitigating Unhealthy Interactions
开源中的压力和倦怠:寻找、理解和减轻不健康的交互
Among the Machines: Human-Bot Interaction on Social Q&A Websites
机器之中:社交 Q 上的人机交互
Detecting Interpersonal Conflict in Issues and Code Review: Cross Pollinating Open- and Closed-Source Approaches
检测问题和代码审查中的人际冲突:开源和闭源方法的交叉授粉

Bogdan Vasilescu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bogdan Vasilescu', 18)}}的其他基金

Collaborative Research: DASS: Accountable Open Source Infrastructure
合作研究:DASS:负责任的开源基础设施
  • 批准号:
    2317168
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant

相似国自然基金

针刺协同化疗联合免疫检查点抑制剂治疗EGFR突变阳性晚期NSCLC的多中心随机对照临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
多模态遥感数据信息协同的海上小目标 识别方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
“ 一老一小”服务联合体体制机制创新研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于大-小模型融合的多智能体自适应导学关键技术研究
  • 批准号:
    JCZRQN202500516
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
SNHG17通过双重机制协同调控Hippo/YAP信号促进非小细胞肺癌恶性进展的作用及机制研究
  • 批准号:
    MS25H160123
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
靶向PD-L1诊疗一体化小分子药物的优化、筛选及其介导的肿瘤多模式协同治疗研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
小细胞肺癌中ARID1A功能丢失与靶向PARP1的协同致死效应及机制研究
  • 批准号:
    82302957
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NKX2-1和FOXA1协同转录调控在小细胞肺癌SCLC-Aα亚型中促进转移的机制研究
  • 批准号:
    82373002
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于趋化协同"原理探究中药小八角莲抗小细胞肺癌活性成分及作用机制"
  • 批准号:
    CSTB2023NSCQ-MSX0490
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2334624
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
  • 批准号:
    2232720
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
  • 批准号:
    2326494
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234921
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326894
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234920
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了