III: Small: Cyber Physical Mappings - Empower Building Analytics at Scale
III:小型:网络物理映射 - 增强大规模建筑分析能力
基本信息
- 批准号:1718216
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Buildings have profound impact on human health, productivity, comfort, and energy consumption. For example, building operation is the single largest energy consumer in the US, accounting for 70% of electricity consumption and 40% of total energy consumption. Allergens, noise levels, and the availability of sunlight affect health and well-being, especially given that on average Americans spend 90% of their time in buildings. Indoor conditions such as thermal comfort and CO2 and pollutant concentrations have been shown to affect human productivity by 8-11%, which has an important effect on the national economy. The performance of the nation's buildings can be significantly improved with analytics engines that collect and analyze data from the thousands of sensing and control points that already exist within a typical building. However, data alone does not inherently have any meaning, and so a person must manually provide the context (also called metadata) about every sensor and controller so that the analytics engine can interpret the data. This costly manual process can take days or weeks for a single building and is a major obstacle for applying building analytics to a large number of buildings.This project creates tools to automatically infer the metadata of data streams, such as the type of sensor or controller that produced the data and its relation to other sensors, equipment, or rooms in the building. The approach is based on the hypothesis that the data in buildings is structured due to weather patterns, equipment operation patterns, and common design patterns that are observed in many buildings around the world. Metadata inference exploits this structure to quickly and easily create new metadata values for a large number of sensing and control points based on known metadata of other points or other buildings. It develops new learning-based techniques along three main research thrusts: 1) value inference of individual points, 2) relationship inference between sensors, and 3) latent metadata inference from building managers' interactive access behaviors with a building management system. This research enables industry and institutions to more easily apply building analytics to new buildings with minimal or even no manual mapping required. It generates impact on average US building performance along multiple metrics, including human health, productivity, comfort, and energy consumption. In addition, the proposed research includes the development of fundamentally new methods and techniques in the fields of data mining and cyber-physical systems, and they will be released as open-sourced code. The research activities will be incorporated into teaching materials for student training and education. Both graduate and undergraduate researchers will be involved in all phases of this research, and we will engage and recruit students from underrepresented groups to participate in this research. If successful, these techniques will generalize to other types of C activities such as human health monitoring, infrastructure monitoring, or smart transportation systems where structure can similarly be used to help infer the physical context of a sensor or controller.
建筑物对人类健康、生产力、舒适度和能源消耗有着深远的影响。例如,建筑运营是美国最大的单一能源消费者,占电力消耗的70%和总能源消耗的40%。过敏原、噪音水平和阳光的可用性都会影响健康和福祉,特别是考虑到美国人平均90%的时间都在建筑物中度过。室内热舒适度、CO2和污染物浓度等因素对人类生产力的影响高达8- 11%,对国民经济有重要影响。分析引擎可以从典型建筑物内已经存在的数千个传感和控制点收集和分析数据,从而显著提高国家建筑物的性能。然而,数据本身本身并不具有任何意义,因此人们必须手动提供关于每个传感器和控制器的上下文(也称为元数据),以便分析引擎可以解释数据。对于单个建筑物来说,这种昂贵的手动过程可能需要数天或数周时间,这是将建筑分析应用于大量建筑物的主要障碍。该项目创建了自动推断数据流元数据的工具,例如产生数据的传感器或控制器的类型及其与建筑物中其他传感器、设备或房间的关系。该方法是基于这样的假设,即建筑物中的数据是结构化的,这是由于天气模式,设备操作模式和常见的设计模式,在世界各地的许多建筑物中观察到的。元数据推断利用这种结构,基于其他点或其他建筑物的已知元数据,快速轻松地为大量传感和控制点创建新的元数据值。它沿着沿着三个主要研究方向开发新的基于学习的技术:1)个体点的值推断,2)传感器之间的关系推断,以及3)来自建筑管理者与建筑管理系统的交互访问行为的潜在元数据推断。这项研究使行业和机构能够更轻松地将建筑分析应用于新建筑,只需很少甚至不需要手动映射。它对美国建筑的平均性能产生了沿着多个指标的影响,包括人类健康、生产力、舒适度和能源消耗。此外,拟议的研究还包括在数据挖掘和网络物理系统领域开发全新的方法和技术,并将以开源代码的形式发布。研究活动将纳入学生培训和教育的教材。研究生和本科生研究人员都将参与这项研究的所有阶段,我们将从代表性不足的群体中招募学生参与这项研究。如果成功,这些技术将推广到其他类型的C活动,如人类健康监测,基础设施监测或智能交通系统,其中结构可以类似地用于帮助推断传感器或控制器的物理环境。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph-based Extractive Explainer for Recommendations
- DOI:10.1145/3485447.3512168
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Peifeng Wang;Renqin Cai;Hongning Wang
- 通讯作者:Peifeng Wang;Renqin Cai;Hongning Wang
Scalable Exploration for Neural Online Learning to Rank with Perturbed Feedback
- DOI:10.1145/3477495.3532057
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Yiling Jia;Hongning Wang
- 通讯作者:Yiling Jia;Hongning Wang
Category-aware Collaborative Sequential Recommendation
- DOI:10.1145/3404835.3462832
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Renqin Cai;Jibang Wu;Aidan San;Chong Wang;Hongning Wang
- 通讯作者:Renqin Cai;Jibang Wu;Aidan San;Chong Wang;Hongning Wang
Learning from Correlated Events for Equipment Relation Inference in Buildings
从相关事件中学习以进行建筑物中的设备关系推理
- DOI:10.1145/3360322.3360852
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Hong, Dezhi;Cai, Renqin;Wang, Hongning;Whitehouse, Kamin
- 通讯作者:Whitehouse, Kamin
Learning Personalized Topical Compositions with Item Response Theory
- DOI:10.1145/3289600.3291022
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:Lu Lin;Lin Gong;Hongning Wang
- 通讯作者:Lu Lin;Lin Gong;Hongning Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongning Wang其他文献
Link Analysis
链接分析
- DOI:
10.1007/978-1-4614-6170-8_100130 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Hongning Wang - 通讯作者:
Hongning Wang
A loop-mediated isothermal amplification coupling with a lateral flow dipstick for rapid and specific detection of fowl adenovirus serotype-4.
环介导等温扩增与侧流试纸耦合,用于快速、特异性检测禽腺病毒血清型 4。
- DOI:
10.1016/j.jviromet.2019.04.026 - 发表时间:
2019 - 期刊:
- 影响因子:3.1
- 作者:
Xiwen Zhai;Xueran Mei;Xuan Wu;Lei Zuo;Long Zhou;Yiming Tian;Xiaoxiao Han;Xin Yang;Hongning Wang - 通讯作者:
Hongning Wang
Indole derivatives as efflux pump inhibitors for TolC protein in a clinical drug-resistant Escherichia coli isolated from a pig farm.
吲哚衍生物作为从养猪场分离的临床耐药大肠杆菌中 TolC 蛋白的外排泵抑制剂。
- DOI:
10.1016/j.ijantimicag.2008.01.007 - 发表时间:
2008 - 期刊:
- 影响因子:10.8
- 作者:
Jingyuan Tang;Hongning Wang - 通讯作者:
Hongning Wang
Distraction Osteogenesis of Fibula Graft for Mandibular Reconstruction Following Ameloblastoma Ablation
成釉细胞瘤消融后下颌重建的腓骨移植牵引成骨
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Luchen Xu;Chunjie Li;Hongning Wang;Songsong Zhu;Yunfeng Li - 通讯作者:
Yunfeng Li
Not Just Skipping: Understanding the Effect of Sponsored Content on Users' Decision-Making in Online Health Search
不仅仅是跳过:了解赞助内容对在线健康搜索中用户决策的影响
- DOI:
10.1145/3539618.3591744 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Anat Hashavit;Hongning Wang;T. Stern;Sarit Kraus - 通讯作者:
Sarit Kraus
Hongning Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongning Wang', 18)}}的其他基金
Student Support for the 41st International ACM Conference on Research and Development in Information Retrieval (SIGIR-2018)
学生对第 41 届国际 ACM 信息检索研究与发展会议 (SIGIR-2018) 的支持
- 批准号:
1826925 - 财政年份:2018
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CAREER: Human-Centric Knowledge Discovery and Decision Optimization
职业:以人为本的知识发现和决策优化
- 批准号:
1553568 - 财政年份:2016
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
SHF: Small: A Hybrid Synchronous Language for Verifiable Execution of Cyber-Physical Systems
SHF:Small:一种用于网络物理系统可验证执行的混合同步语言
- 批准号:
2348706 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Socio-Technical Approaches for Securing Cyber-Physical Systems from False Claim Attacks
SaTC:核心:小型:保护网络物理系统免受虚假声明攻击的社会技术方法
- 批准号:
2310470 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CPS: Small: Learning How to Control: A Meta-Learning Approach for the Adaptive Control of Cyber-Physical Systems
CPS:小:学习如何控制:网络物理系统自适应控制的元学习方法
- 批准号:
2228092 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CyberSecurityAId: Empowering Small Businesses with Cyber Hygiene
CyberSecurityAId:为小型企业提供网络卫生保障
- 批准号:
10098244 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Collaborative R&D
CPS: TTP Option: Small: Consistency vs. Availability in Cyber-Physical Systems
CPS:TTP 选项:小:网络物理系统中的一致性与可用性
- 批准号:
2233769 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324769 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CPS: Small: Infusing Quantum Computing, Decomposition, and Learning for Addressing Cyber-Physical Systems Optimization Challenges
CPS:小型:融合量子计算、分解和学习来应对网络物理系统优化挑战
- 批准号:
2312086 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Towards Deceptive and Domain-Specific Cyber-Physical Honeypots
SaTC:核心:小型:走向欺骗性和特定领域的网络物理蜜罐
- 批准号:
2231651 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Enhancing Cyber Resilience of Small and Medium-sized Enterprises through Cyber Security Communities of Support
通过网络安全支持社区增强中小企业的网络弹性
- 批准号:
EP/X037282/1 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant