III: Small: Non-Invasive Real-Time Analytics in Database Systems using Holistic Query Compilation
III:小型:使用整体查询编译在数据库系统中进行非侵入式实时分析
基本信息
- 批准号:1718582
- 负责人:
- 金额:$ 49.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are two major trends in modern data processing applications that make them distinct from applications in previous decades. The first is that they are noted for their continuously changing data sets. This could come from transactions updating the database or from upstream sources. The second is that they want to analyze the latest obtained data as quickly as possible. Data has immense value as soon as it is created, but that value diminishes over time. Therefore, it is imperative that the queries access the newest data generated in order for their results to have the most impact. The ability to ask complex questions about data as soon as it enters in the database is useful in many application domains, including real-time monitoring systems (e.g., is an incoming packet from a potential attacker?) and financial services (e.g., is this new credit card purchase fraudulent?). But current systems contain architecture remnants of legacy database management systems (DBMSs) that prevent them from taking advantage of newer hardware support for parallel optimizations. This limits the types of queries that an application executes on a DBMS that targets data as soon as it arrives. In turn, this adds additional cost to deploying a database application in terms of both hardware and administration overhead. Thus, the goal of this project is to investigate using query compilation to allow non-invasive analytical operations that are more complex than what is practical in today's DBMSs. Such query compilation techniques are beneficial to a wide array of data processing systems. The results of this study will allow organizations to deploy DBMSs that are able to handle applications with larger data sets and more complex workloads with fewer resources (e.g., hardware, personnel, energy).Modern data-intensive applications seek to obtain new insights in real-time by analyzing a combination of historical data sets alongside recently collected data. To support such workloads, database management systems (DBMSs) need to support complex analytical queries over diverse data sets. The ever decreasing cost of DRAM is allowing a greater number of these applications to be memory-resident. As such, in-memory DBMSs will be used for most analytical and machine learning applications in the future. But there are remnants of how legacy disk-oriented DBMSs process queries that still exist in newer in-memory DBMSs that inhibit the kind of high-performance query execution over large data sets that this project targets. Thus, the goal of this project is to overcome this barrier through a new holistic approach to query compilation that integrates it comprehensively throughout the DBMS, and which builds upon (and adapts) recent advances in "just-in-time" (JIT) compilation technology and heterogeneous hardware resources. Using compilation to optimize many different aspects of the DBMS's architecture is important to support future "Big Data" applications that need to ingest large amounts of new data while simultaneously executing complex analytical workloads in near real-time.
现代数据处理应用程序有两个主要趋势,使其与前几十年的应用程序不同。首先,它们以其不断变化的数据集而闻名。这可能来自更新数据库的事务或来自上游源。第二,他们希望尽快分析最新获得的数据。数据一经创建就具有巨大的价值,但随着时间的推移,这种价值会逐渐减少。因此,查询必须访问生成的最新数据,以使其结果产生最大的影响。在数据一进入数据库就询问关于数据的复杂问题的能力在许多应用领域中是有用的,包括实时监控系统(例如,是来自潜在攻击者的传入数据包?)和金融服务(例如,这种新的信用卡购买是欺诈吗?)。但是当前的系统包含遗留数据库管理系统(DBMS)的架构残余,这阻止了它们利用新的硬件支持进行并行优化。这限制了应用程序在DBMS上执行的查询类型,DBMS在数据到达时就将其作为目标。反过来,这在硬件和管理开销方面增加了部署数据库应用程序的额外成本。因此,这个项目的目标是研究使用查询编译来允许非侵入性的分析操作,这些操作比今天的DBMS中的实际操作更复杂。这样的查询编译技术对于广泛的数据处理系统是有益的。这项研究的结果将使组织能够部署能够用更少的资源处理具有更大数据集和更复杂工作负载的应用程序的DBMS(例如,现代数据密集型应用寻求通过分析历史数据集以及最近收集的数据的组合来实时获得新的见解。为了支持这样的工作负载,数据库管理系统(DBMS)需要支持对不同数据集的复杂分析查询。DRAM成本的不断降低使得更多的应用程序可以驻留在内存中。因此,内存中的DBMS将在未来用于大多数分析和机器学习应用程序。但是,遗留的面向磁盘的DBMS处理查询的方式仍然存在于较新的内存中DBMS中,这些查询抑制了该项目针对的大型数据集的高性能查询执行。因此,这个项目的目标是克服这个障碍,通过一个新的整体的方法来查询编译,它全面集成在整个DBMS,并建立在(和适应)的最新进展“即时”(JIT)编译技术和异构硬件资源。使用编译来优化DBMS架构的许多不同方面对于支持未来的“大数据”应用程序非常重要,这些应用程序需要摄取大量新数据,同时近乎实时地执行复杂的分析工作负载。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Relaxed Operator Fusion for In-Memory Databases: Making Compilation, Vectorization, and Prefetching Work Together At Last
- DOI:10.14778/3151113.3151114
- 发表时间:2017-09
- 期刊:
- 影响因子:0
- 作者:Prashanth Menon;Andrew Pavlo;T. Mowry
- 通讯作者:Prashanth Menon;Andrew Pavlo;T. Mowry
Permutable compiled queries: dynamically adapting compiled queries without recompiling
可改变的编译查询:动态调整编译查询而无需重新编译
- DOI:10.14778/3425879.3425882
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Menon, Prashanth;Ngom, Amadou;Ma, Lin;Mowry, Todd C.;Pavlo, Andrew
- 通讯作者:Pavlo, Andrew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Pavlo其他文献
On Scalable Transaction Execution in Partitioned Main Memory Database Management Systems
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Andrew Pavlo - 通讯作者:
Andrew Pavlo
Non-Volatile Memory Database Management Systems
非易失性内存数据库管理系统
- DOI:
10.2200/s00891ed1v01y201812dtm055 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Joy Arulraj;Andrew Pavlo - 通讯作者:
Andrew Pavlo
NULLS!: Revisiting Null Representation in Modern Columnar Formats
NULLS!:重新审视现代列格式中的空表示
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xinyu Zeng;Ruijun Meng;Andrew Pavlo;Wes McKinney;Huanchen Zhang - 通讯作者:
Huanchen Zhang
: Database architectures for modern hardware : report from Dagstuhl Seminar 18251
:现代硬件的数据库架构:来自 Dagstuhl 研讨会 18251 的报告
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
P. Boncz;G. Graefe;Bingsheng He;K. Sattler;Philippe Bonnet;A. Kemper;Viktor Leis;Justin J. Levandoski;S. Manegold;Danica Porobic;Caetano Sauer;Carsten Binnig;Andrew Crotty;Alex Galakatos;Tim Kraska;E. Z. The;Thomas Leich;Thilo Pionteck;Gunter Saake;Olaf Spinczyk;Andreas Becher;Lekshmi B.G;David Broneske;Tobias Drewes;B. Gurumurthy;K. Meyer;Jürgen Teich;Juan A. Colmenares;Gage Eads;S. Hofmeyr;Sarah Bird;Miquel Moretó;David Chou;Brian Gluzman;Eric Roman;D. B. Bartolini;Nitesh Mor;K. Asanović;John D Kubiatowicz. 2013;Daniel Lemire;Andrew Pavlo;A. Nica - 通讯作者:
A. Nica
Enterprise Database Applications and the Cloud: A Difficult Road Ahead
企业数据库应用程序和云:前进的道路艰难
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
M. Stonebraker;Andrew Pavlo;Rebecca Taft;Michael L. Brodie - 通讯作者:
Michael L. Brodie
Andrew Pavlo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Pavlo', 18)}}的其他基金
CAREER: Self-Driving Database Management Systems
职业:自动驾驶数据库管理系统
- 批准号:
1846158 - 财政年份:2019
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
SPX: Collaborative Research: Distributed Database Management with Logical Leases and Hardware Transactional Memory
SPX:协作研究:具有逻辑租赁和硬件事务内存的分布式数据库管理
- 批准号:
1822933 - 财政年份:2018
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Moving the Abyss: Database Management on Future 1000-core Processors
XPS:完整:DSD:协作研究:移动深渊:未来 1000 核处理器上的数据库管理
- 批准号:
1438955 - 财政年份:2014
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
III: Small: Automatic Database Management System Tuning Through Large-scale Machine Learning
III:小型:通过大规模机器学习自动调整数据库管理系统
- 批准号:
1423210 - 财政年份:2014
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Phase Ib/II study of safety and efficacy of EZH2 inhibitor, tazemetostat, and PD-1 blockade for treatment of advanced non-small cell lung cancer
EZH2 抑制剂、他泽美司他和 PD-1 阻断治疗晚期非小细胞肺癌的安全性和有效性的 Ib/II 期研究
- 批准号:
10481965 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
CC* Integration-Small: Enhancing Data Transfers by Enabling Programmability and Closed-loop Control in a Non-programmable Science DMZ
CC* Integration-Small:通过在不可编程科学 DMZ 中启用可编程性和闭环控制来增强数据传输
- 批准号:
2346726 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Role of the circadian rhythm in the regulation of the tumor microenvironment of non-small cell cancer
昼夜节律在非小细胞癌肿瘤微环境调节中的作用
- 批准号:
478693 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Operating Grants
Rsearch of non-alcoholic steatohepatitis (NASH) targeting small intestinal mucosal homeostasis by drug repositioning.
通过药物重新定位靶向小肠粘膜稳态的非酒精性脂肪性肝炎(NASH)研究。
- 批准号:
23K06294 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Equilibrium and non-equilibrium behaviour in polymer/small-molecule mixtures for organic photovoltaic (OPV) applications
有机光伏 (OPV) 应用中聚合物/小分子混合物的平衡和非平衡行为
- 批准号:
2889023 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Studentship
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
- 批准号:
2313146 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
- 批准号:
2230060 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Analysis of Pathology of AXL-MBIP Fusion Gene in Non-Small Cell Lung Cancer and Search for Therapeutic Targets
非小细胞肺癌AXL-MBIP融合基因的病理分析及治疗靶点的寻找
- 批准号:
23K15212 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identifying and targeting a novel mechanism of chemotherapy-induced immunotherapeutic resistance in non-small cell lung cancer
识别和靶向非小细胞肺癌化疗引起的免疫治疗耐药的新机制
- 批准号:
10657188 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Advanced machine learning to empower ultra-sensitive liquid biopsy in melanoma and non-small cell lung cancer
先进的机器学习使黑色素瘤和非小细胞肺癌的超灵敏液体活检成为可能
- 批准号:
10591304 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别: