NeTS: Small: Learning-Guided Network Resource Allocation: A Closed-Loop Approach

NeTS:小型:学习引导的网络资源分配:闭环方法

基本信息

  • 批准号:
    1718901
  • 负责人:
  • 金额:
    $ 47.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Based on network measurement and user behavior data, much recent work has studied the modeling and prediction of network utility and user experience using machine learning techniques. While it provides important insights, prediction itself is often not the ultimate goal in networks. Ideally, a network could identify users with poor experience and take proper actions to proactively improve the overall performance. To achieve this goal, the project advocates a closed-loop approach that uses learning-aided utility model to explicitly guide resource allocation in networks and uses feedback to (in)validate and improve the learned utility model. This investigation provides important insights in understanding, designing, and analyzing learning-model-aided resource optimization algorithms. Furthermore, because of its generality, this closed-loop approach can be applied in other systems with the following characteristics: 1) the system is too complex to rely on domain knowledge only to build a white-box utility model; 2) there exists sufficient data so that a utility model can be learned; 3) to maximize the overall utility, one can optimize over certain control variables that affect the utility value; and 4) there exists a feedback loop so that the effect of the control can be observed. The outcome of the project can be applied to such systems in different disciplines. Utilizing this proposed framework is highly challenging due to the unknown and noisy nature of the network utility function, and in the context of high dimensionality, coupled resource constraints, and non-convex optimization. To address these challenges, the project considers two complementary approaches: a greedy approach and an integrated approach. The greedy approach has much flexibility in applying diverse learning models, which may fit different application scenarios better in practice, but is difficult to analyze. The integrated approach builds upon Gaussian Process (GP) bandits that integrate both the constructed model and model uncertainty in resource allocation decisions. This approach is more amenable to theoretical analysis, although highly challenging. In both approaches, one needs to optimally allocate resource based on the learned models. The contribution of the project comes from solving the corresponding non-convex optimization problems. The last step is to use the closed-loop feedback to build a better or optimal utility model. The integrated approach aims to develop hierarchical GP bandit algorithms for dimensionality reduction, ideally with theoretical performance guarantees. The greedy approach leverages perturbed-exploration schemes for general learning models and strives for practicality and generality.
基于网络测量和用户行为数据,最近的许多工作研究了使用机器学习技术对网络效用和用户体验的建模和预测。虽然它提供了重要的见解,但预测本身往往不是网络的最终目标。理想情况下,网络可以识别体验不佳的用户,并采取适当的措施来主动改善整体性能。为了实现这一目标,该项目倡导一种闭环方法,该方法使用学习辅助效用模型来明确指导网络中的资源分配,并使用反馈来验证和改进学习的效用模型。这项研究为理解、设计和分析学习模型辅助的资源优化算法提供了重要的见解。此外,由于其通用性,该闭环方法可以应用于具有以下特征的其他系统:1)系统太复杂,不能仅依赖于领域知识来构建白盒效用模型; 2)存在足够的数据,使得可以学习效用模型; 3)为了最大化总体效用,可以对影响效用值的某些控制变量进行优化;以及4)存在反馈回路,使得可以观察控制的效果。该项目的成果可应用于不同学科的此类系统。由于网络效用函数的未知性和噪声性,以及在高维、耦合资源约束和非凸优化的背景下,利用所提出的框架是非常具有挑战性的。为了应对这些挑战,该项目考虑了两种互补的方法:贪婪方法和综合方法。贪婪方法在应用不同的学习模型方面具有很大的灵活性,在实践中可以更好地适应不同的应用场景,但很难分析。集成的方法建立在高斯过程(GP)的土匪,集成了构建的模型和模型的不确定性,在资源分配决策。这种方法更适合理论分析,尽管具有很大的挑战性。在这两种方法中,都需要根据学习的模型来优化资源分配。该项目的贡献来自于解决相应的非凸优化问题。最后一步是使用闭环反馈来构建更好或最优的效用模型。综合方法的目的是开发层次GP强盗算法降维,理想的理论性能保证。贪婪的方法利用一般学习模型的扰动探索方案,并力求实用性和通用性。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Exploration-Exploitation Tradeoff for Opportunistic Bandits
  • DOI:
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huasen Wu;Xueying Guo;Xin Liu
  • 通讯作者:
    Huasen Wu;Xueying Guo;Xin Liu
A Target-Agnostic Attack on Deep Models: Exploiting Security Vulnerabilities of Transfer Learning
  • DOI:
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shahbaz Rezaei;Xin Liu
  • 通讯作者:
    Shahbaz Rezaei;Xin Liu
IPO: Interior-point Policy Optimization under Constraints
  • DOI:
    10.1609/aaai.v34i04.5932
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongshuai Liu;J. Ding;Xin Liu
  • 通讯作者:
    Yongshuai Liu;J. Ding;Xin Liu
Deep Learning for Encrypted Traffic Classification: An Overview
  • DOI:
    10.1109/mcom.2019.1800819
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Rezaei, Shahbaz;Liu, Xin
  • 通讯作者:
    Liu, Xin
A Collaborative Learning Based Approach for Parameter Configuration of Cellular Networks
  • DOI:
    10.1109/infocom.2019.8737657
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Chuai;Zhitang Chen;Guochen Liu;Xueying Guo;Xiaoxiao Wang;Xin Liu;Chongming Zhu;Feiyi Shen
  • 通讯作者:
    Jie Chuai;Zhitang Chen;Guochen Liu;Xueying Guo;Xiaoxiao Wang;Xin Liu;Chongming Zhu;Feiyi Shen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Liu其他文献

Development of a filter-aided extraction method coupled with glycosylamine labeling to simplify and enhance high performance liquid chromatography-based N-glycan analysis.
开发过滤辅助提取方法与糖胺标记相结合,以简化和增强基于高效液相色谱的 N-聚糖分析。
  • DOI:
    10.1016/j.chroma.2019.04.059
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Yike Wu;Qiuyue Sha;Chang Wang;Bifeng Liu;Song Wang;Xin Liu
  • 通讯作者:
    Xin Liu
Cloning and identification of measles virus receptor gene from marmoset cells
狨猴细胞麻疹病毒受体基因的克隆与鉴定
  • DOI:
    10.1007/bf03183307
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingyun Li;Xin Liu;Peng Zhang;Y. Qi;M. Cheng
  • 通讯作者:
    M. Cheng
Universal Scaling of Distributed Queues Under Load Balancing in the Super-Halfin-Whitt Regime
Super-Halfin-Whitt 机制中负载均衡下分布式队列的通用扩展
The formation mechanism of irregular salt caverns during solution mining for natural gas storage
天然气储库溶液开采过程中不规则盐穴的形成机制

Xin Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Liu', 18)}}的其他基金

WoU-MMA: Dwarf AGNs from Variability for the Origins of Seeds (DAVOS)
WoU-MMA:来自种子起源变异的矮 AGN(DAVOS)
  • 批准号:
    2308077
  • 财政年份:
    2023
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
CDS&E: Detection, Instance Segmentation, and Classification for Astronomical Surveys with Deep Learning (DeepDISC)
CDS
  • 批准号:
    2308174
  • 财政年份:
    2023
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
WoU-MMA: Frequency and Abundance of Binary sUpermassive bLack holes from Optical Variability Surveys (FABULOVS)
WoU-MMA:来自光学变率巡天 (FABULOVS) 的双超大质量黑洞的频率和丰度
  • 批准号:
    2206499
  • 财政年份:
    2022
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
CNS Core: Medium: Collaborative: Exploring and Exploiting Learning for Efficient Network Control: Non-Stationarity, Inter-Dependence, and Domain-Knowledge
CNS 核心:中:协作:探索和利用学习实现高效网络控制:非平稳性、相互依赖和领域知识
  • 批准号:
    1901218
  • 财政年份:
    2019
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
CONFERENCE: 2019 Gordon Research Seminar on RNA Editing to be held March 23-24, 2019 at the Renaissance Tuscany Il Ciocco in Lucca, Italy
会议:2019 年戈登 RNA 编辑研究研讨会将于 2019 年 3 月 23 日至 24 日在意大利卢卡文艺复兴托斯卡纳 Il Ciocco 举行
  • 批准号:
    1901541
  • 财政年份:
    2018
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
EARS: Utilizing Diverse Spectrum Bands in Cellular Networks - A Unified Information Learning and Decision Making Approach
EARS:在蜂窝网络中利用不同的频段 - 一种统一的信息学习和决策方法
  • 批准号:
    1547461
  • 财政年份:
    2016
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
WiFiUS: Collaborative Research: Data-Guided Resource Management for Dense Heterogeneous Networks
WiFiUS:协作研究:密集异构网络的数据引导资源管理
  • 批准号:
    1457060
  • 财政年份:
    2015
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
CIF: Small: The Power of Online Learning in Stochastic System Optimization
CIF:小:随机系统优化中在线学习的力量
  • 批准号:
    1423542
  • 财政年份:
    2014
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
NSF Workshop on Information and Communication Technologies for Sustainability (WICS)
NSF 信息和通信技术促进可持续发展研讨会 (WICS)
  • 批准号:
    1140062
  • 财政年份:
    2011
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
NeTS: Small: Beyond Listen-Before-Talk: Advanced Cognitive Radio Access Control in Distributed Multiuser Networks
NeTS:小型:超越先听后说:分布式多用户网络中的高级认知无线电访问控制
  • 批准号:
    0917251
  • 财政年份:
    2009
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

NeTS: Small: Machine Learning Meets Wireless Network Optimization: Exploring the Latent Knowledge
NeTS:小型:机器学习遇见无线网络优化:探索潜在知识
  • 批准号:
    1816908
  • 财政年份:
    2018
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
NeTS: Small: Support for Interactive AR/VR Video: Learning and Optimizing at the Network Edge
NeTS:小型:支持交互式 AR/VR 视频:在网络边缘学习和优化
  • 批准号:
    1817216
  • 财政年份:
    2018
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Fast Online Machine Learning Algorithms for Wireless Networks
NeTS:小型:协作研究:无线网络的快速在线机器学习算法
  • 批准号:
    1717045
  • 财政年份:
    2017
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Fast Online Machine Learning Algorithms for Wireless Networks
NeTS:小型:协作研究:无线网络的快速在线机器学习算法
  • 批准号:
    1718203
  • 财政年份:
    2017
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
NeTS: Small: A Learning Approach to Managing Cellular Network Upgrades
NeTS:小型:管理蜂窝网络升级的学习方法
  • 批准号:
    1718089
  • 财政年份:
    2017
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
NeTS: Small: Dynamic Spectrum Access by Learning Primary Network Topology
NeTS:小型:通过学习主网络拓扑进行动态频谱访问
  • 批准号:
    1527026
  • 财政年份:
    2015
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
NeTS: Small: Beating the Odds in Traffic Measurements/Detection with Optimal Online Learning and Adaptive Policies
NeTS:小型:通过最佳在线学习和自适应策略克服流量测量/检测中的困难
  • 批准号:
    1321115
  • 财政年份:
    2013
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
NETS: Small: Machine Learning Based Algorithms for Quasi-Static Ad Hoc Wireless Networks
NETS:小型:用于准静态自组织无线网络的基于机器学习的算法
  • 批准号:
    1218823
  • 财政年份:
    2012
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Learning to help: Trading spectrum ownership for performance
NeTS:小型:协作研究:学习帮助:用频谱所有权换取性能
  • 批准号:
    1017172
  • 财政年份:
    2010
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Learning to help: Trading spectrum ownership for performance
NeTS:小型:协作研究:学习帮助:用频谱所有权换取性能
  • 批准号:
    1016841
  • 财政年份:
    2010
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了