NeTS: Small: Learning-Guided Network Resource Allocation: A Closed-Loop Approach
NeTS:小型:学习引导的网络资源分配:闭环方法
基本信息
- 批准号:1718901
- 负责人:
- 金额:$ 47.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Based on network measurement and user behavior data, much recent work has studied the modeling and prediction of network utility and user experience using machine learning techniques. While it provides important insights, prediction itself is often not the ultimate goal in networks. Ideally, a network could identify users with poor experience and take proper actions to proactively improve the overall performance. To achieve this goal, the project advocates a closed-loop approach that uses learning-aided utility model to explicitly guide resource allocation in networks and uses feedback to (in)validate and improve the learned utility model. This investigation provides important insights in understanding, designing, and analyzing learning-model-aided resource optimization algorithms. Furthermore, because of its generality, this closed-loop approach can be applied in other systems with the following characteristics: 1) the system is too complex to rely on domain knowledge only to build a white-box utility model; 2) there exists sufficient data so that a utility model can be learned; 3) to maximize the overall utility, one can optimize over certain control variables that affect the utility value; and 4) there exists a feedback loop so that the effect of the control can be observed. The outcome of the project can be applied to such systems in different disciplines. Utilizing this proposed framework is highly challenging due to the unknown and noisy nature of the network utility function, and in the context of high dimensionality, coupled resource constraints, and non-convex optimization. To address these challenges, the project considers two complementary approaches: a greedy approach and an integrated approach. The greedy approach has much flexibility in applying diverse learning models, which may fit different application scenarios better in practice, but is difficult to analyze. The integrated approach builds upon Gaussian Process (GP) bandits that integrate both the constructed model and model uncertainty in resource allocation decisions. This approach is more amenable to theoretical analysis, although highly challenging. In both approaches, one needs to optimally allocate resource based on the learned models. The contribution of the project comes from solving the corresponding non-convex optimization problems. The last step is to use the closed-loop feedback to build a better or optimal utility model. The integrated approach aims to develop hierarchical GP bandit algorithms for dimensionality reduction, ideally with theoretical performance guarantees. The greedy approach leverages perturbed-exploration schemes for general learning models and strives for practicality and generality.
基于网络测量和用户行为数据,许多最新工作研究了使用机器学习技术对网络实用程序和用户体验的建模和预测。尽管它提供了重要的见解,但预测本身通常不是网络中的最终目标。理想情况下,网络可以识别经验差的用户并采取适当的措施以主动改善整体性能。为了实现这一目标,该项目提倡一种闭环方法,该方法使用学习辅助实用程序模型明确指导网络中的资源分配,并使用反馈来验证和改善学习的效用模型。这项调查为理解,设计和分析学习模型的资源优化算法提供了重要的见解。此外,由于其普遍性,这种闭环方法可以应用于具有以下特征的其他系统:1)系统太复杂而无法依靠域知识仅构建白色盒子实用程序模型; 2)存在足够的数据,因此可以学习实用性模型; 3)为了最大化整体实用程序,可以优化影响效用值的某些控制变量; 4)存在一个反馈回路,以便可以观察到对照的效果。该项目的结果可以应用于不同学科的此类系统。由于网络公用事业函数的未知和嘈杂性,并且在高维度,耦合资源约束和非convex优化的背景下,使用此提议的框架非常具有挑战性。为了应对这些挑战,该项目考虑了两种互补方法:一种贪婪的方法和一种综合方法。贪婪的方法在应用多种学习模型方面具有很大的灵活性,这在实践中可能更适合不同的应用程序方案,但是很难分析。集成的方法建立在高斯过程(GP)匪徒的基础上,该过程在资源分配决策中同时集成了构建的模型和模型不确定性。这种方法更适合理论分析,尽管极具挑战性。在这两种方法中,都需要根据学习模型来最佳分配资源。该项目的贡献来自解决相应的非凸优化问题。最后一步是使用闭环反馈来构建更好或最佳的实用程序模型。综合方法旨在开发层次的GP BANDIT算法,以降低维度,理想情况下是理论性能保证。贪婪的方法利用了一般学习模型的扰动 - 探索方案,并为实用性和一般性而努力。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Exploration-Exploitation Tradeoff for Opportunistic Bandits
- DOI:
- 发表时间:2017-09
- 期刊:
- 影响因子:0
- 作者:Huasen Wu;Xueying Guo;Xin Liu
- 通讯作者:Huasen Wu;Xueying Guo;Xin Liu
A Target-Agnostic Attack on Deep Models: Exploiting Security Vulnerabilities of Transfer Learning
- DOI:
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:Shahbaz Rezaei;Xin Liu
- 通讯作者:Shahbaz Rezaei;Xin Liu
IPO: Interior-point Policy Optimization under Constraints
- DOI:10.1609/aaai.v34i04.5932
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Yongshuai Liu;J. Ding;Xin Liu
- 通讯作者:Yongshuai Liu;J. Ding;Xin Liu
Deep Learning for Encrypted Traffic Classification: An Overview
- DOI:10.1109/mcom.2019.1800819
- 发表时间:2019-05-01
- 期刊:
- 影响因子:11.2
- 作者:Rezaei, Shahbaz;Liu, Xin
- 通讯作者:Liu, Xin
Cellular Network Configuration via Online Learning and Joint Optimization
通过在线学习和联合优化进行蜂窝网络配置
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Guo, Xueying;Trimponiasy, George;Wang, Xiaoxiao;Chen, Zhitang;Geng, Yanhui;Liu, Xin
- 通讯作者:Liu, Xin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Liu其他文献
Racial Disparity in the Associations of Cotinine with Insulin Secretion: Data from the National Health and Nutrition Examination Survey, 2007-2012
可替宁与胰岛素分泌关联的种族差异:来自 2007-2012 年国家健康和营养检查调查的数据
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.7
- 作者:
Rong Liu;Zheng Zheng;Jie Du;K. Christoffel;Xin Liu - 通讯作者:
Xin Liu
The Longitudinal Trajectory of Vitamin D Status from Birth to Early Childhood on the Development of Food Sensitization
从出生到幼儿期维生素 D 状态对食物过敏发展的纵向轨迹
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3.6
- 作者:
Xin Liu;L. Arguelles;Ying Zhou;Guoying Wang;Qi Chen;H. Tsai;X. Hong;Rong Liu;H. Price;C. Pearson;S. Apollon;N. Cruz;R. Schleimer;C. Langman;J. Pongracic;Xiaobin Wang - 通讯作者:
Xiaobin Wang
The diameters of almost all Cayley digraphs
几乎所有凯莱有向图的直径
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
J. Meng;Xin Liu - 通讯作者:
Xin Liu
Renal Transplant: Nonenhanced RenalMRAngiographywith Magnetization-preparedSteady-State
肾移植:稳态磁化非增强肾磁共振血管造影
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Xin Liu;Natasha Berg;J. Sheehan;P. Weale;J. Carr - 通讯作者:
J. Carr
Impact of Telepresence on Consumer Learning: A Consumer Information Processing Approach
网真对消费者学习的影响:消费者信息处理方法
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Xin Liu;H. Teo - 通讯作者:
H. Teo
Xin Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Liu', 18)}}的其他基金
WoU-MMA: Dwarf AGNs from Variability for the Origins of Seeds (DAVOS)
WoU-MMA:来自种子起源变异的矮 AGN(DAVOS)
- 批准号:
2308077 - 财政年份:2023
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
CDS&E: Detection, Instance Segmentation, and Classification for Astronomical Surveys with Deep Learning (DeepDISC)
CDS
- 批准号:
2308174 - 财政年份:2023
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
WoU-MMA: Frequency and Abundance of Binary sUpermassive bLack holes from Optical Variability Surveys (FABULOVS)
WoU-MMA:来自光学变率巡天 (FABULOVS) 的双超大质量黑洞的频率和丰度
- 批准号:
2206499 - 财政年份:2022
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
CNS Core: Medium: Collaborative: Exploring and Exploiting Learning for Efficient Network Control: Non-Stationarity, Inter-Dependence, and Domain-Knowledge
CNS 核心:中:协作:探索和利用学习实现高效网络控制:非平稳性、相互依赖和领域知识
- 批准号:
1901218 - 财政年份:2019
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
CONFERENCE: 2019 Gordon Research Seminar on RNA Editing to be held March 23-24, 2019 at the Renaissance Tuscany Il Ciocco in Lucca, Italy
会议:2019 年戈登 RNA 编辑研究研讨会将于 2019 年 3 月 23 日至 24 日在意大利卢卡文艺复兴托斯卡纳 Il Ciocco 举行
- 批准号:
1901541 - 财政年份:2018
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
EARS: Utilizing Diverse Spectrum Bands in Cellular Networks - A Unified Information Learning and Decision Making Approach
EARS:在蜂窝网络中利用不同的频段 - 一种统一的信息学习和决策方法
- 批准号:
1547461 - 财政年份:2016
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
WiFiUS: Collaborative Research: Data-Guided Resource Management for Dense Heterogeneous Networks
WiFiUS:协作研究:密集异构网络的数据引导资源管理
- 批准号:
1457060 - 财政年份:2015
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
CIF: Small: The Power of Online Learning in Stochastic System Optimization
CIF:小:随机系统优化中在线学习的力量
- 批准号:
1423542 - 财政年份:2014
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
NSF Workshop on Information and Communication Technologies for Sustainability (WICS)
NSF 信息和通信技术促进可持续发展研讨会 (WICS)
- 批准号:
1140062 - 财政年份:2011
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
NeTS: Small: Beyond Listen-Before-Talk: Advanced Cognitive Radio Access Control in Distributed Multiuser Networks
NeTS:小型:超越先听后说:分布式多用户网络中的高级认知无线电访问控制
- 批准号:
0917251 - 财政年份:2009
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
相似国自然基金
基于深度学习的小样本侧扫声纳小目标探测
- 批准号:42374050
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于图表示深度学习的全新小分子先导化合物筛选方法研究
- 批准号:62372375
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
不平衡数据下基于多源域迁移学习的小微企业信用风险评估研究
- 批准号:72301093
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于多时序多模态分子影像Delta深度融合学习预测非小细胞肺癌免疫治疗疗效的研究
- 批准号:82371994
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于无监督深度学习的复材小尺寸缺陷热成像表征方法研究
- 批准号:62301507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NeTS: Small: Machine Learning Meets Wireless Network Optimization: Exploring the Latent Knowledge
NeTS:小型:机器学习遇见无线网络优化:探索潜在知识
- 批准号:
1816908 - 财政年份:2018
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
NeTS: Small: Support for Interactive AR/VR Video: Learning and Optimizing at the Network Edge
NeTS:小型:支持交互式 AR/VR 视频:在网络边缘学习和优化
- 批准号:
1817216 - 财政年份:2018
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
Early Identification of Acute Kidney Injury Using Deep Recurrent Neural Nets, Presented with Probable Etiology
使用深层循环神经网络早期识别急性肾损伤,并提出可能的病因
- 批准号:
9621546 - 财政年份:2018
- 资助金额:
$ 47.9万 - 项目类别:
NeTS: Small: Collaborative Research: Fast Online Machine Learning Algorithms for Wireless Networks
NeTS:小型:协作研究:无线网络的快速在线机器学习算法
- 批准号:
1717045 - 财政年份:2017
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant
NeTS:Small:Optimal Learning Times for Task-Oriented Communication Networks
NeTS:Small:面向任务的通信网络的最佳学习时间
- 批准号:
1718477 - 财政年份:2017
- 资助金额:
$ 47.9万 - 项目类别:
Standard Grant