CDS&E: Detection, Instance Segmentation, and Classification for Astronomical Surveys with Deep Learning (DeepDISC)

CDS

基本信息

  • 批准号:
    2308174
  • 负责人:
  • 金额:
    $ 48.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The next generation of wide-field deep astronomical surveys will deliver unprecedented amounts of images of the sky through the 2020s and beyond. As both the sensitivity and depth increase, larger numbers of blended (overlapping) sources will occur. Blending would result in biased measurements, contaminating key astronomical inferences. Having efficient deblending techniques is thus a high priority for the future of astronomical research. However, an efficient and robust method to detect, deblend, and classify sources is still lacking for massive surveys. In this project, scientists at the University of Illinois, Urbana-Champaign will develop a versatile deep learning framework for image deblending and source detection. This work will make it easy to efficiently process wide-deep survey images and will accurately identify blended sources with the lowest possible latency to maximize science returns. Moreover, this work will provide robust uncertainties of detection inferences, which are critical for enabling precision cosmology. The proposed work has broad implications for a wide range of subjects, including detecting transients and solar system objects to probing the nature of dark matter and dark energy. As part of this project, the PI will also develop and teach a dedicated summer outreach program to engage young girls in STEM.This research program will leverage the rapidly developing field of computer vision to build a new deep learning platform for astronomical object detection, instance segmentation, classification, and beyond. It will adapt the latest open-source algorithms in computer vision for object detection and segmentation. The approach is interdisciplinary, combining state-of-the-art astronomical survey data with the latest deep learning tools. The new platform will be trained and validated using a hybrid of real data and realistic simulations that are built by combining traditional image simulations with generative models. It will be fully featured to enable higher-level downstream science applications such as photometric redshift estimation and galaxy morphology inferences. All codes generated will be open source to enable broad community usage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代广域深度天文勘测将在 2020 年代及以后提供数量空前的天空图像。随着灵敏度和深度的增加,将会出现大量的混合(重叠)源。混合会导致测量结果出现偏差,从而影响关键的天文推论。因此,拥有高效的去混合技术是未来天文学研究的重中之重。然而,大规模调查仍然缺乏有效且稳健的方法来检测、去混合和分类源。在这个项目中,伊利诺伊大学厄巴纳-香槟分校的科学家将开发一种用于图像去混合和源检测的多功能深度学习框架。这项工作将使有效处理宽深度调查图像变得容易,并将以尽可能低的延迟准确识别混合源,以最大限度地提高科学回报。此外,这项工作将提供检测推断的强大不确定性,这对于实现精确宇宙学至关重要。拟议的工作对广泛的学科具有广泛的影响,包括检测瞬变和太阳系物体以探测暗物质和暗能量的性质。作为该项目的一部分,PI 还将开发和教授一个专门的夏季外展项目,以吸引年轻女孩参与 STEM。该研究项目将利用快速发展的计算机视觉领域,构建一个新的深度学习平台,用于天文物体检测、实例分割、分类等。它将采用计算机视觉领域最新的开源算法进行对象检测和分割。该方法是跨学科的,将最先进的天文调查数据与最新的深度学习工具相结合。新平台将使用真实数据和真实模拟的混合体进行训练和验证,这些真实模拟是通过将传统图像模拟与生成模型相结合而构建的。它将功能齐全,以实现更高级别的下游科学应用,例如光度红移估计和星系形态推断。生成的所有代码都将开源,以实现广泛的社区使用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection, instance segmentation, and classification for astronomical surveys with deep learning ( deepdisc ): detectron2 implementation and demonstration with Hyper Suprime-Cam data
使用深度学习 (deepdisc) 进行天文测量的检测、实例分割和分类:使用 Hyper Suprime-Cam 数据进行 detectorron2 实现和演示
  • DOI:
    10.1093/mnras/stad2785
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Merz, Grant;Liu, Yichen;Burke, Colin J.;Aleo, Patrick D.;Liu, Xin;Carrasco Kind, Matias;Kindratenko, Volodymyr;Liu, Yufeng
  • 通讯作者:
    Liu, Yufeng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Liu其他文献

Development of a filter-aided extraction method coupled with glycosylamine labeling to simplify and enhance high performance liquid chromatography-based N-glycan analysis.
开发过滤辅助提取方法与糖胺标记相结合,以简化和增强基于高效液相色谱的 N-聚糖分析。
  • DOI:
    10.1016/j.chroma.2019.04.059
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Yike Wu;Qiuyue Sha;Chang Wang;Bifeng Liu;Song Wang;Xin Liu
  • 通讯作者:
    Xin Liu
Cloning and identification of measles virus receptor gene from marmoset cells
狨猴细胞麻疹病毒受体基因的克隆与鉴定
  • DOI:
    10.1007/bf03183307
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingyun Li;Xin Liu;Peng Zhang;Y. Qi;M. Cheng
  • 通讯作者:
    M. Cheng
Universal Scaling of Distributed Queues Under Load Balancing in the Super-Halfin-Whitt Regime
Super-Halfin-Whitt 机制中负载均衡下分布式队列的通用扩展
The formation mechanism of irregular salt caverns during solution mining for natural gas storage
天然气储库溶液开采过程中不规则盐穴的形成机制

Xin Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Liu', 18)}}的其他基金

WoU-MMA: Dwarf AGNs from Variability for the Origins of Seeds (DAVOS)
WoU-MMA:来自种子起源变异的矮 AGN(DAVOS)
  • 批准号:
    2308077
  • 财政年份:
    2023
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
WoU-MMA: Frequency and Abundance of Binary sUpermassive bLack holes from Optical Variability Surveys (FABULOVS)
WoU-MMA:来自光学变率巡天 (FABULOVS) 的双超大质量黑洞的频率和丰度
  • 批准号:
    2206499
  • 财政年份:
    2022
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
CNS Core: Medium: Collaborative: Exploring and Exploiting Learning for Efficient Network Control: Non-Stationarity, Inter-Dependence, and Domain-Knowledge
CNS 核心:中:协作:探索和利用学习实现高效网络控制:非平稳性、相互依赖和领域知识
  • 批准号:
    1901218
  • 财政年份:
    2019
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
CONFERENCE: 2019 Gordon Research Seminar on RNA Editing to be held March 23-24, 2019 at the Renaissance Tuscany Il Ciocco in Lucca, Italy
会议:2019 年戈登 RNA 编辑研究研讨会将于 2019 年 3 月 23 日至 24 日在意大利卢卡文艺复兴托斯卡纳 Il Ciocco 举行
  • 批准号:
    1901541
  • 财政年份:
    2018
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
NeTS: Small: Learning-Guided Network Resource Allocation: A Closed-Loop Approach
NeTS:小型:学习引导的网络资源分配:闭环方法
  • 批准号:
    1718901
  • 财政年份:
    2017
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
EARS: Utilizing Diverse Spectrum Bands in Cellular Networks - A Unified Information Learning and Decision Making Approach
EARS:在蜂窝网络中利用不同的频段 - 一种统一的信息学习和决策方法
  • 批准号:
    1547461
  • 财政年份:
    2016
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
WiFiUS: Collaborative Research: Data-Guided Resource Management for Dense Heterogeneous Networks
WiFiUS:协作研究:密集异构网络的数据引导资源管理
  • 批准号:
    1457060
  • 财政年份:
    2015
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
CIF: Small: The Power of Online Learning in Stochastic System Optimization
CIF:小:随机系统优化中在线学习的力量
  • 批准号:
    1423542
  • 财政年份:
    2014
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
NSF Workshop on Information and Communication Technologies for Sustainability (WICS)
NSF 信息和通信技术促进可持续发展研讨会 (WICS)
  • 批准号:
    1140062
  • 财政年份:
    2011
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
NeTS: Small: Beyond Listen-Before-Talk: Advanced Cognitive Radio Access Control in Distributed Multiuser Networks
NeTS:小型:超越先听后说:分布式多用户网络中的高级认知无线电访问控制
  • 批准号:
    0917251
  • 财政年份:
    2009
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
  • 批准号:
    2338857
  • 财政年份:
    2024
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Continuing Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
  • 批准号:
    2347575
  • 财政年份:
    2024
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Standard Grant
Global Road Damage Detection with privacy-preserved collaboration
通过保护隐私的协作进行全球道路损坏检测
  • 批准号:
    24K17366
  • 财政年份:
    2024
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
  • 批准号:
    EP/X016218/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Research Grant
AI-powered portable MRI abnormality detection (APPMAD)
人工智能驱动的便携式 MRI 异常检测 (APPMAD)
  • 批准号:
    MR/Z503812/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Research Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 48.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了