Early Identification of Acute Kidney Injury Using Deep Recurrent Neural Nets, Presented with Probable Etiology
使用深层循环神经网络早期识别急性肾损伤,并提出可能的病因
基本信息
- 批准号:9621546
- 负责人:
- 金额:$ 34.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisAddressAdmission activityAffectAreaBayesian ModelingClinicalClinical Decision Support SystemsClinical TrialsComputer softwareDataData SetDetectionDevelopmentDiagnosisDiagnosticDiagnostic ProcedureEarly identificationElectronic Health RecordEtiologyEventFatigueFutureGoalsHandHead Start ProgramHospital CostsHospital MortalityHospitalsHourHumanInjury to KidneyInpatientsKidneyKnowledgeLabelLaboratoriesLeadMachine LearningMeasurementMethodsMonitorPatient riskPatient-Focused OutcomesPatientsPerformancePharmaceutical PreparationsPhasePhysical ExaminationPlant RootsProcessProspective StudiesRadiology SpecialtyRandomized Controlled TrialsReceiver Operating CharacteristicsRecurrenceRenal functionReportingResearchRiskRisk AssessmentSepsisSeriesSmall Business Innovation Research GrantSupervisionSyndromeSystemTestingTextTherapeuticTimeTrainingUnited StatesWorkbaseclinical decision supportcomputer based statistical methodseffective therapyexperienceexperimental studyimaging studyimprovedimproved outcomeinsightlearning strategymortalitynovelovertreatmentpredictive toolspreventprototyperapid diagnosisrecurrent neural networkrelating to nervous systemsuccesstooltrend
项目摘要
Abstract
Significance: In this SBIR project we propose to develop Previse, a novel, software-based clinical decision
support (CDS) system for predicting acute kidney injury (AKI), and attributing AKI to one of several causal
mechanisms (etiologies). Previse will use machine learning methods and information drawn from the electronic
health record (EHR) to identify the early signs of acute kidney injury. By doing so before the clinical syndrome
of AKI is fully developed, Previse will give clinicians the time to intervene with the goals of preventing further
kidney damage, and decreasing the sequelae of AKI. Combining this prediction module with a second module
that suggests the underlying causes responsible for an incipient or full AKI, Previse will enable clinicians to
make earlier and better-informed treatment decisions for AKI patients. Research Question: Can a machine-
learning-based CDS predict the development and progression of AKI in hospitalized patients 72 hours in
advance of KDIGO stage 2 or 3, with performance providing an area under the receiver operating
characteristic curve (AUROC) of at least 0.85? Is it possible to use a Bayesian model to infer the cause of AKI
with high accuracy (AUROC ≥ 0.75)? Prior work: We have developed a prototype version of the Previse
system which predicts AKI up to 72 hours in advance of KDIGO stage 2 or 3 criteria, with an AUROC near
0.70. We have previously developed machine-learning-based predictive tools for sepsis, in-hospital mortality,
and other adverse patient events with performance significantly improved over commonly used rules-based
scoring systems. Specific Aims: To predict the onset of chart-abstracted KDIGO stage 2 or 3 AKI in
retrospective data, 72 hours in advance (Aim 1); to use data drawn from the EHR to identify the cause of AKI
at time of onset with high accuracy, and to present this causal inference, its likelihood, and relevant evidence
supporting it in a human-interpretable fashion (Aim 2). Methods: We will predict the onset of AKI using a
deep, recurrent neural network (RNN). This expressive, nonlinear classifier will incorporate time-series
information in the qualitative portions of the EHR and will also incorporate features derived from text
components, such as radiology reports. Labeling AUROC of 0.85 or higher at 72 hours pre-KDIGO AKI will
constitute success in Aim 1. In Aim 2, we will train a dynamic Bayesian network to identify the cause of AKI.
We will train this system using semi-supervised methods, where the causes of a set of AKI examples will be
hand-annotated by clinician experts; these examples will be split into two groups, with some used for training
and the remainder for testing. Aim 2 will be successful if this training results in etiology identification accuracy
of at least 0.75 in the test set. Future Directions: Following the proposed work, the combined Previse system
will be deployed for prospective studies at partner hospitals.
摘要
意义:在这个SBIR项目中,我们建议开发Previse,一种新颖的基于软件的临床决策
本发明提供了一种用于预测急性肾损伤(阿基)并将阿基归因于几种原因之一的CDS支持系统,
机制(病因学)。Previse将使用机器学习方法和从电子
健康记录(EHR),以识别急性肾损伤的早期体征。通过在临床综合症之前这样做
当AKI完全发展时,Previse将为临床医生提供时间进行干预,以预防进一步的AKI。
肾损伤,减少阿基后遗症。将该预测模块与第二模块组合
这表明了导致早期或完全阿基的根本原因,Previse将使临床医生能够
为阿基患者做出更早、更明智的治疗决定。研究问题:一台机器-
基于学习的CDS预测住院患者72小时内阿基的发生和进展,
KDIGO第2或第3阶段的进步,性能提供了接收器操作下的区域
特征曲线(AUROC)至少为0.85?是否可以使用贝叶斯模型来推断阿基的原因
准确度高(AUROC ≥ 0.75)?先前的工作:我们已经开发了Previse的原型版本
该系统预测阿基的时间比KDIGO 2或3期标准提前72小时,AUROC接近
0.70.我们之前已经开发了基于机器学习的败血症预测工具,住院死亡率,
和其他不良患者事件,性能比常用的基于规则的
评分系统具体目的:预测患者中KDIGO 2期或3阿基的发病情况。
回顾性数据,提前72小时(目标1);使用从EHR中提取的数据确定阿基的原因
在发病时,以高准确性,并提出这种因果关系的推断,其可能性,和相关的证据
以人类可理解的方式支持它(目标2)。方法:我们将使用一种
深度递归神经网络(RNN)。这种表达,非线性分类器将纳入时间序列
在EHR的定性部分的信息,也将纳入来自文本的功能
例如放射学报告。在KDIGO阿基前72小时标记AUROC为0.85或更高,
目标1的成功。在目标2中,我们将训练一个动态贝叶斯网络来识别阿基的原因。
我们将使用半监督方法训练这个系统,其中一组阿基示例的原因将是
由临床专家手工注释;这些示例将分为两组,其中一些用于培训
其余的用于测试。目标2将是成功的,如果这种培训的结果,病因识别的准确性
至少0.75的概率。未来的方向:根据拟议的工作,
将在合作医院进行前瞻性研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ritankar Das其他文献
Ritankar Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ritankar Das', 18)}}的其他基金
A computational approach to early sepsis detection
早期脓毒症检测的计算方法
- 批准号:
9557664 - 财政年份:2018
- 资助金额:
$ 34.93万 - 项目类别:
Autonomous system supporting patient-specific transfer and discharge decisions
支持患者特定转移和出院决策的自主系统
- 批准号:
9256278 - 财政年份:2017
- 资助金额:
$ 34.93万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Research Grant














{{item.name}}会员




