Novel Numerical Approaches for Structured Optimization

结构化优化的新颖数值方法

基本信息

  • 批准号:
    1719549
  • 负责人:
  • 金额:
    $ 9.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

The data sets involved in many modern applications are extremely large, and are often collected at distributed locations and continuously with the progression of time. Common examples are data sets associated with searches on the Internet, social networks, information technology, healthcare, biology, finance, and engineering. Analyzing and learning from these massive data sets imposes great challenges on computation, data storage, and data transfer. On the other hand, high performance computers are now readily available. This project aims to develop novel computational methods to enable high performance computing for questions involving extremely large data sets. The approaches address several computational challenges that emerge from applications across data sciences and engineering. Undergraduate and graduate students are involved in the project.This project is focused on designing novel computational algorithms and analyzing their theoretical behaviors for solving structured optimization problems that involve huge data sets and are parameterized by large numbers of variables. Both the defining objective functions and the optimal solutions exhibit particular structures, including convexity, smoothness, and multi-linearity for the former, and sparsity, low-rank, and orthogonality for the latter. This research aims to take advantage of this structure in designing efficient computational methods. The project includes several research directions, from variable splitting for handling complicated regularizers, to adaptive asynchronous parallel computing and analysis of convergence rates. Stochastic approximations will be used for dealing with problems involving stream data, and novel numerical approaches will be used to solve non-linearly constrained problems via primal-dual updates. Problems with multi-array structure will also be investigated. The research aims to significantly speed up existing algorithms both theoretically and practically, lead to new theoretical results of existing algorithms that currently lack convergence analysis, and give rise to novel algorithms for computing solutions to complicated problems that are currently not efficiently solvable.
许多现代应用程序中涉及的数据集非常大,并且通常在分布式位置收集,并且随着时间的推移而不断进行。常见的例子是与互联网、社交网络、信息技术、医疗保健、生物学、金融和工程上的搜索相关联的数据集。分析和学习这些海量数据集对计算、数据存储和数据传输提出了巨大的挑战。另一方面,高性能计算机现在已经很容易获得。该项目旨在开发新的计算方法,以实现涉及超大数据集的问题的高性能计算。这些方法解决了数据科学和工程应用中出现的几个计算挑战。 本项目以本科生和研究生为对象,旨在设计新颖的计算算法,并分析其理论行为,以解决涉及大量数据集并由大量变量参数化的结构化优化问题。定义的目标函数和最优解都表现出特定的结构,包括凸性,光滑性和多线性的前者,稀疏性,低秩,和正交的后者。本研究旨在利用这种结构设计有效的计算方法。该项目包括几个研究方向,从处理复杂正则化的变量分裂,到自适应异步并行计算和收敛速度分析。随机近似将用于处理涉及流数据的问题,新的数值方法将用于通过原始-对偶更新来解决非线性约束问题。多阵列结构的问题也将被调查。该研究的目的是显着加快现有的算法在理论上和实践中,导致现有的算法,目前缺乏收敛性分析的新的理论结果,并产生新的算法计算解决方案的复杂问题,目前不能有效地解决。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the convergence of higher-order orthogonal iteration
  • DOI:
    10.1080/03081087.2017.1391743
  • 发表时间:
    2015-04
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Yangyang Xu
  • 通讯作者:
    Yangyang Xu
Markov chain block coordinate descent
  • DOI:
    10.1007/s10589-019-00140-7
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Tao Sun;Yuejiao Sun;Yangyang Xu;W. Yin
  • 通讯作者:
    Tao Sun;Yuejiao Sun;Yangyang Xu;W. Yin
Accelerated primal–dual proximal block coordinate updating methods for constrained convex optimization
Greedy coordinate descent method on non-negative quadratic programming
Robust PCA via Dictionary Based Outlier Pursuit
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yangyang Xu其他文献

Oil-water interfacial behavior of soy β-conglycinin–soyasaponin mixtures and their effect on emulsion stability
大豆β-伴大豆球蛋白-大豆皂苷混合物的油水界面行为及其对乳液稳定性的影响
  • DOI:
    10.1016/j.foodhyd.2019.105531
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    10.7
  • 作者:
    Lijie Zhu;Qingying Xu;Xiuying Liu;Yangyang Xu;Lina Yang;Shengnan Wang;Jun Li;Tao Ma;He Liu
  • 通讯作者:
    He Liu
Global and local structure preserving sparse subspace learning: An iterative approach to unsupervised feature selection
保留稀疏子空间学习的全局和局部结构:无监督特征选择的迭代方法
  • DOI:
    10.1016/j.patcog.2015.12.008
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Nan Zhou;Yangyang Xu;Hong Cheng;Jun Fang;Witold Pedrycz
  • 通讯作者:
    Witold Pedrycz
Ensemble One-Dimensional Convolution Neural Networks for Skeleton-Based Action Recognition
用于基于骨架的动作识别的集成一维卷积神经网络
  • DOI:
    10.1109/lsp.2018.2841649
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yangyang Xu;Jun Cheng;Lei Wang;Haiying Xia;Feng Liu;Dapeng Tao
  • 通讯作者:
    Dapeng Tao
Sparse Bilinear Logistic Regression
稀疏双线性 Logistic 回归
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianing Shi;Yangyang Xu;Richard Baraniuk
  • 通讯作者:
    Richard Baraniuk
Possible Mitigation of Global Cooling due to Supervolcanic Eruption via Intentional Release of Fluorinated Gases
通过有意释放氟化气体可能缓解超级火山喷发造成的全球变冷
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yangyang Xu;N. Ribar;G. Schade;A. Lockley;Yi;Ge Zhang;Jeffrey Sachnik;P. Yu;Jianxin Hu;G. Velders;A. Lockley
  • 通讯作者:
    A. Lockley

Yangyang Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yangyang Xu', 18)}}的其他基金

Conference: CAS Climate: Synthesizing and assessing wholistic urban climate solutions in Texas
会议:CAS 气候:综合和评估德克萨斯州的整体城市气候解决方案
  • 批准号:
    2232533
  • 财政年份:
    2023
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
Accelerated distributed stochastic optimization methods and applications in machine learning
加速分布式随机优化方法及其在机器学习中的应用
  • 批准号:
    2208394
  • 财政年份:
    2022
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
Information-Based Complexity Analysis and Optimal Methods for Saddle-Point Structured Optimization
基于信息的鞍点结构优化的复杂性分析和优化方法
  • 批准号:
    2053493
  • 财政年份:
    2021
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Continuing Grant
Using Large Ensemble Simulations from Multiple Global Climate Models to Quantify the Internal Decadal Climate Variability
使用多个全球气候模型的大型集合模拟来量化内部十年气候变化
  • 批准号:
    1841308
  • 财政年份:
    2019
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant

相似海外基金

Combining numerical and analytical approaches for precision cosmology based on galaxy statistics
基于星系统计的精密宇宙学结合数值和分析方法
  • 批准号:
    22K03634
  • 财政年份:
    2022
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of high-fidelity numerical modelling approaches with experimental and numerical analysis to accurately predict liquid-fuel sprays characteristics for low-emissions gas turbine combustion
通过实验和数值分析开发高保真数值建模方法,以准确预测低排放燃气轮机燃烧的液体燃料喷雾特性
  • 批准号:
    567957-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
NSFGEO-NERC: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
  • 批准号:
    NE/V013343/1
  • 财政年份:
    2021
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Research Grant
NSFGEO-NERC: Collaborative Research: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:合作研究:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
  • 批准号:
    2023434
  • 财政年份:
    2021
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:合作研究:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
  • 批准号:
    2023442
  • 财政年份:
    2021
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
Collaborative research: Integrating tectonics, surface processes and paleobiodiversity using numerical and observational approaches
合作研究:利用数值和观测方法整合构造、地表过程和古生物多样性
  • 批准号:
    2041738
  • 财政年份:
    2021
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
Collaborative research: Integrating tectonics, surface processes and paleobiodiversity using numerical and observational approaches
合作研究:利用数值和观测方法整合构造、地表过程和古生物多样性
  • 批准号:
    2041895
  • 财政年份:
    2021
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Standard Grant
Development of cooling strategies and advanced numerical approaches for heat transfer in nuclear fusion reactor components under extreme heat loads
开发极端热负荷下核聚变反应堆部件传热的冷却策略和先进数值方法
  • 批准号:
    2498033
  • 财政年份:
    2020
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Studentship
Numerical and analytical approaches to random graphs
随机图的数值和分析方法
  • 批准号:
    554423-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 9.6万
  • 项目类别:
    University Undergraduate Student Research Awards
Effective hamiltonian construction through combining numerical simulation with experimental approaches and its application to strongly correlated topological materials
通过数值模拟与实验方法相结合的有效哈密顿构造及其在强相关拓扑材料中的应用
  • 批准号:
    20H01850
  • 财政年份:
    2020
  • 资助金额:
    $ 9.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了