Accelerated distributed stochastic optimization methods and applications in machine learning
加速分布式随机优化方法及其在机器学习中的应用
基本信息
- 批准号:2208394
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning, and in particular, deep learning, has become increasingly impactful in a wide range of applications, including face recognition, digital image classification, natural language processing, self-driving vehicles, and scientific computing. The success of deep learning largely depends on the availability of a huge amount of data. This "big" data, on one hand, enables successful learning of the underlying distributions of the data, and thus the learned model can yield high prediction accuracy on new data points that follow similar distributions. On the other hand, the huge amount of data raises great challenges when designing efficient numerical approaches. This project focuses on addressing the challenges that are caused by distributed "big" data that can contain private information, from the computational and mathematical perspectives. Research findings from this project will be included in graduate-level topics courses, undergraduate and graduate students will be trained in this field and will participate in this research, and a weekly seminar will be organized to exchange ideas relevant to this project. New computational approaches will be developed for training machine learning models on a cluster of computing nodes as well as solving decentralized multi-agent optimization problems that have the capacity to handle coupling constraints. The main goal is to design fast-convergent and communication-efficient optimization methods with theoretical guarantees for solving large-scale distributed machine learning problems. Accelerated compressed proximal stochastic gradient methods will be designed for distributed composite smooth stochastic problems, accelerated compressed stochastic subgradient methods will be designed for distributed nonconvex nonsmooth problems, optimal decentralized stochastic gradient methods will be designed for solving multi-agent optimization with nonlinear coupling constraints, and asynchronous implementations will be performed in the proposed methods in order to have high parallelization speed up.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习,特别是深度学习,在包括人脸识别、数字图像分类、自然语言处理、自动驾驶汽车和科学计算在内的广泛应用中变得越来越有影响力。深度学习的成功在很大程度上取决于大量数据的可用性。一方面,这种“大”数据能够成功学习数据的底层分布,因此学习的模型可以对遵循类似分布的新数据点产生高预测精度。另一方面,大量的数据在设计有效的数值方法时提出了巨大的挑战。该项目的重点是从计算和数学的角度解决由可能包含私人信息的分布式“大”数据所带来的挑战。该项目的研究成果将被纳入研究生课程,本科生和研究生将接受该领域的培训并参与这项研究,每周将组织一次研讨会,交流与该项目相关的想法。 将开发新的计算方法,用于在计算节点集群上训练机器学习模型,以及解决有能力处理耦合约束的分散式多智能体优化问题。主要目标是设计快速收敛和通信高效的优化方法,并为解决大规模分布式机器学习问题提供理论保证。针对分布式复合光滑随机问题设计了加速压缩邻近随机梯度方法,针对分布式非凸非光滑问题设计了加速压缩随机次梯度方法,针对非线性耦合约束的多智能体优化设计了最优分散随机梯度方法,该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用的支持基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proximal Stochastic Recursive Momentum Methods for Nonconvex Composite Decentralized Optimization
- DOI:10.1609/aaai.v37i7.26087
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Gabriel Mancino-Ball;Shengnan Miao;Yangyang Xu;Jiewei Chen
- 通讯作者:Gabriel Mancino-Ball;Shengnan Miao;Yangyang Xu;Jiewei Chen
Parallel and distributed asynchronous adaptive stochastic gradient methods
- DOI:10.1007/s12532-023-00237-5
- 发表时间:2020-02
- 期刊:
- 影响因子:6.3
- 作者:Yangyang Xu;Yibo Xu;Yonggui Yan;Colin Sutcher-Shepard;Leopold Grinberg;Jiewei Chen
- 通讯作者:Yangyang Xu;Yibo Xu;Yonggui Yan;Colin Sutcher-Shepard;Leopold Grinberg;Jiewei Chen
A Decentralized Primal-Dual Framework for Non-Convex Smooth Consensus Optimization
- DOI:10.1109/tsp.2023.3239799
- 发表时间:2021-07
- 期刊:
- 影响因子:5.4
- 作者:Gabriel Mancino-Ball;Yangyang Xu;Jiewei Chen
- 通讯作者:Gabriel Mancino-Ball;Yangyang Xu;Jiewei Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yangyang Xu其他文献
Oil-water interfacial behavior of soy β-conglycinin–soyasaponin mixtures and their effect on emulsion stability
大豆β-伴大豆球蛋白-大豆皂苷混合物的油水界面行为及其对乳液稳定性的影响
- DOI:
10.1016/j.foodhyd.2019.105531 - 发表时间:
2020-04 - 期刊:
- 影响因子:10.7
- 作者:
Lijie Zhu;Qingying Xu;Xiuying Liu;Yangyang Xu;Lina Yang;Shengnan Wang;Jun Li;Tao Ma;He Liu - 通讯作者:
He Liu
Global and local structure preserving sparse subspace learning: An iterative approach to unsupervised feature selection
保留稀疏子空间学习的全局和局部结构:无监督特征选择的迭代方法
- DOI:
10.1016/j.patcog.2015.12.008 - 发表时间:
2015-06 - 期刊:
- 影响因子:8
- 作者:
Nan Zhou;Yangyang Xu;Hong Cheng;Jun Fang;Witold Pedrycz - 通讯作者:
Witold Pedrycz
Ensemble One-Dimensional Convolution Neural Networks for Skeleton-Based Action Recognition
用于基于骨架的动作识别的集成一维卷积神经网络
- DOI:
10.1109/lsp.2018.2841649 - 发表时间:
2018-01 - 期刊:
- 影响因子:3.9
- 作者:
Yangyang Xu;Jun Cheng;Lei Wang;Haiying Xia;Feng Liu;Dapeng Tao - 通讯作者:
Dapeng Tao
Sparse Bilinear Logistic Regression
稀疏双线性 Logistic 回归
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jianing Shi;Yangyang Xu;Richard Baraniuk - 通讯作者:
Richard Baraniuk
Possible Mitigation of Global Cooling due to Supervolcanic Eruption via Intentional Release of Fluorinated Gases
通过有意释放氟化气体可能缓解超级火山喷发造成的全球变冷
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yangyang Xu;N. Ribar;G. Schade;A. Lockley;Yi;Ge Zhang;Jeffrey Sachnik;P. Yu;Jianxin Hu;G. Velders;A. Lockley - 通讯作者:
A. Lockley
Yangyang Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yangyang Xu', 18)}}的其他基金
Conference: CAS Climate: Synthesizing and assessing wholistic urban climate solutions in Texas
会议:CAS 气候:综合和评估德克萨斯州的整体城市气候解决方案
- 批准号:
2232533 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Information-Based Complexity Analysis and Optimal Methods for Saddle-Point Structured Optimization
基于信息的鞍点结构优化的复杂性分析和优化方法
- 批准号:
2053493 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Using Large Ensemble Simulations from Multiple Global Climate Models to Quantify the Internal Decadal Climate Variability
使用多个全球气候模型的大型集合模拟来量化内部十年气候变化
- 批准号:
1841308 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Novel Numerical Approaches for Structured Optimization
结构化优化的新颖数值方法
- 批准号:
1719549 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229345 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229344 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER:Stochastic Thermodynamics of Distributed Computation
EAGER:分布式计算的随机热力学
- 批准号:
2221345 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Studies on Multipurpose Distributed Constraint Optimization Problems under Dynamic Stochastic Environments with Disaster Relief Simulations
动态随机环境下多用途分布式约束优化问题与救灾模拟研究
- 批准号:
21K12039 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Distributed Synchronous and Asynchronous Stochastic Optimization Algorithms over Networks
网络分布式同步和异步随机优化算法
- 批准号:
2012439 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Stochastic capacity scheduling and control of distributed energy storage enabling stacked services
职业:分布式储能的随机容量调度和控制,支持堆叠服务
- 批准号:
1845093 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CRII: CIF: Unifying Scheduling and Optimization Techniques to Speed-up Distributed Stochastic Gradient Descent
CRII:CIF:统一调度和优化技术来加速分布式随机梯度下降
- 批准号:
1850029 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Distributed Fault Diagnosis for Large-Scale Nonlinear Stochastic Systems
大规模非线性随机系统的分布式故障诊断
- 批准号:
2002627 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
- 批准号:
1733812 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: Microscopic Deployment Algorithms to Achieve Macroscopic Objectives for Spatially Distributed Stochastic Networks of Mobile Agents
EAGER:实现移动代理空间分布式随机网络宏观目标的微观部署算法
- 批准号:
1753687 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant