Collaborative Research: Transportation Network Identification: Information Fusion via Stochastic Optimization

合作研究:交通网络识别:通过随机优化进行信息融合

基本信息

  • 批准号:
    1719548
  • 负责人:
  • 金额:
    $ 13.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Knowledge of the traffic network state, in terms of, for example, network-level traffic flow and travel time, is critically needed for network monitoring and effective transportation system management and control under both normal and extreme conditions. Recent technological advances, such as mobile sensing and connected vehicles, can generate big data. In general, this research aims to address challenges on how to best use these inherently large-scale, dynamic, and heterogeneous (multi-source) data streams. More specifically, the project seeks an innovative systems approach for estimating the statistical properties of traffic flow and travel time via integrating various traffic data pieces over a complex network structure (such as traffic counts collected by fixed sensors and individual "urban digital footprints" collected by Bluetooth tag reader logs, cellular phone records, and global positioning system traces). A successful outcome of this project will directly benefit society through more effective utilization of information, and thus more sustainable and efficient transportation system planning and operations. This project includes curricula development and student mentoring activities that help better prepare next-generation transportation professionals for challenges brought by the big data era.Mathematically, the question addressed in this project is: Given directly measurable network parameters x, which tend to be localized and incomplete, how can one infer global network parameters y that are often difficult to be measured directly, with the mapping between y and x built on a complex network structure? This problem category has broad applications in transportation, communication, and energy networks; although, the focus in this project is on transportation networks. Built on knowledge in transportation network science, stochastic optimization, variational analysis, and non-parametric estimation, the research team will pursue the following main tasks: (1) Creation of an optimization framework for network identification based on stochastic optimization and non-parametric estimation; (2) Integration of multi-source traffic data (hard information) with domain-knowledge-based soft information via constraints and functional mapping; (3) Linking historical-data-based offline estimation with real-time information for online estimation and decision support through Bayesian methods; (4) Testing and validating the project's methods using both real-world data and computer simulations. This research establishes a unifying theoretical framework for traffic network identification that integrates knowledge in transportation network science and data analytics. By providing greater modeling flexibility than existing methods in handling various types of hard and soft information and in capturing transportation network physics, this new method ushers a paradigm-shift in traffic network system identification. The project also creates a real-world engineering platform for strengthening connections between optimization and statistics.
交通网络状态的知识,例如,网络级的交通流量和旅行时间,是非常需要的网络监控和有效的运输系统管理和控制在正常和极端条件下。 最近的技术进步,如移动的传感和联网车辆,可以产生大数据。 总的来说,本研究旨在解决如何最好地利用这些固有的大规模,动态和异构(多源)数据流的挑战。 更具体地说,该项目寻求一种创新的系统方法,通过在复杂的网络结构上整合各种交通数据(如固定传感器收集的交通计数和蓝牙标签阅读器日志收集的个人“城市数字足迹”,手机记录和全球定位系统跟踪)来估计交通流量和旅行时间的统计特性。该项目的成功结果将通过更有效地利用信息,从而更可持续和更有效地规划和运营交通系统,直接造福社会。 该项目包括课程开发和学生辅导活动,帮助下一代交通专业人员更好地应对大数据时代带来的挑战。从数学上讲,该项目解决的问题是:给定可直接测量的网络参数x,其往往是局部的和不完整的,如何能够推断出通常难以直接测量的全局网络参数y,y和x之间的映射建立在复杂的网络结构上?这类问题在交通、通信和能源网络中有广泛的应用;尽管本项目的重点是交通网络。基于交通网络科学、随机优化、变分分析和非参数估计等方面的知识,研究团队将开展以下主要工作:(1)建立基于随机优化和非参数估计的网络识别优化框架;(2)多源交通数据整合(硬信息)与基于领域知识的软信息通过约束和功能映射;(3)通过贝叶斯方法将基于历史数据的离线估计与用于在线估计和决策支持的实时信息联系起来;(4)使用真实世界数据和计算机模拟测试和验证项目方法。 这项研究为交通网络识别建立了一个统一的理论框架,整合了交通网络科学和数据分析的知识。通过提供更大的建模灵活性比现有的方法在处理各种类型的硬和软信息,并在捕获交通网络物理,这种新方法迎来了交通网络系统识别的范式转变。该项目还创建了一个现实世界的工程平台,以加强优化和统计之间的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuegang Ban其他文献

Analysis of Differences in ECG Characteristics for Different Types of Drivers under Anxiety
不同类型驾驶员焦虑状态心电图特征差异分析
  • DOI:
    10.1155/2021/6640527
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Yongqing Guo;Xiaoyuan Wang;Qing Xu;Quan Yuan;Chenglin Bai;Xuegang Ban
  • 通讯作者:
    Xuegang Ban
Real-time route diversion control in a model predictive control framework with multiple objectives: Traffic efficiency, emission reduction and fuel economy
模型预测控制框架中的实时路线改道控制具有多个目标:交通效率、减排和燃油经济性
Simulation of Carbon Emission for Heavy-Duty Vehicle Queuing Systems
重型车辆排队系统碳排放仿真
The Emergence Characteristics of Driver’s Intentions Influenced by Different Emotions
不同情绪影响驾驶员意图的显现特征
  • DOI:
    10.3390/su132313292
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoyuan Wang;Yongqing Guo;Chenglin Bai;Quan Yuan;Shanliang Liu;Xuegang Ban
  • 通讯作者:
    Xuegang Ban
Correcting the Market Failure in Work Trips with Work Rescheduling: An Analysis Using Bi-level Models for the Firm-workers Interplay
通过工作重新安排来纠正工作旅行中的市场失灵:使用双层模型进行企业-工人相互作用的分析
  • DOI:
    10.1007/s11067-013-9213-7
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Wilfredo F. Yushimito;Xuegang Ban;J. Holguín
  • 通讯作者:
    J. Holguín

Xuegang Ban的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuegang Ban', 18)}}的其他基金

Collaborative Research: Data Poisoning Attacks and Infrastructure-Enabled Solutions for Traffic State Estimation and Prediction
合作研究:数据中毒攻击和基于基础设施的交通状态估计和预测解决方案
  • 批准号:
    2326340
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Privately Collecting and Analyzing V2X Data for Urban Traffic Modeling
合作研究:SaTC:核心:小型:私下收集和分析用于城市交通建模的 V2X 数据
  • 批准号:
    2034615
  • 财政年份:
    2021
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Bias Modeling and Estimation of Networked Transportation Data
合作研究:网络交通数据的偏差建模和估计
  • 批准号:
    1825053
  • 财政年份:
    2018
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
CAREER: Using Mobile Sensors for Traffic Knowledge Extraction and Dynamic Network Management
职业:使用移动传感器进行交通知识提取和动态网络管理
  • 批准号:
    1719551
  • 财政年份:
    2016
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Transportation Network Identification: Information Fusion via Stochastic Optimization
合作研究:交通网络识别:通过随机优化进行信息融合
  • 批准号:
    1537700
  • 财政年份:
    2015
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
CAREER: Using Mobile Sensors for Traffic Knowledge Extraction and Dynamic Network Management
职业:使用移动传感器进行交通知识提取和动态网络管理
  • 批准号:
    1055555
  • 财政年份:
    2011
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Continuing Grant
BECS Collaborative Research: Modeling the Dynamics of Traffic User Equilibria Using Differential Variational Inequalities
BECS 协作研究:使用微分变分不等式对交通用户均衡动态进行建模
  • 批准号:
    1024647
  • 财政年份:
    2010
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Mobile Sensors as Traffic Probes - Addressing Transportation Modeling and Privacy Protection in an Integrated Framework
协作研究:移动传感器作为交通探针 - 在集成框架中解决交通建模和隐私保护问题
  • 批准号:
    1031452
  • 财政年份:
    2010
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Collaborative Research: ELET2: Engaged Learning Environment for Emerging Transportation Technologies
合作研究:ELET2:新兴交通技术的参与式学习环境
  • 批准号:
    2315451
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Transforming Connected and Automated Transportation with Smart Networking, Cooperative Sensing, and Edge Computing
CPS:中:协作研究:通过智能网络、协作传感和边缘计算改变互联和自动化交通
  • 批准号:
    2409271
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Collaborative Research: ELET2: Engaged Learning Environment for Emerging Transportation Technologies
合作研究:ELET2:新兴交通技术的参与式学习环境
  • 批准号:
    2315450
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2313191
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2313192
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Reliable Monitoring and Predictive Modeling for Safer Future Smart Transportation Structures
合作研究:EAGER:可靠的监控和预测建模,打造更安全的未来智能交通结构
  • 批准号:
    2329801
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Reliable Monitoring and Predictive Modeling for Safer Future Smart Transportation Structures
合作研究:EAGER:可靠的监控和预测建模,打造更安全的未来智能交通结构
  • 批准号:
    2329802
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Reliable Monitoring and Predictive Modeling for Safer Future Smart Transportation Structures
合作研究:EAGER:可靠的监控和预测建模,打造更安全的未来智能交通结构
  • 批准号:
    2329800
  • 财政年份:
    2023
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
Excellence in Research/Collaborative Research: Modeling Transportation Choices Under the Presence of Real-time Information Using Simulated-based Virtual Experiments
卓越的研究/合作研究:使用基于模拟的虚拟实验在实时信息存在下对交通选择进行建模
  • 批准号:
    2200633
  • 财政年份:
    2022
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了