Collaborative Research: Data Poisoning Attacks and Infrastructure-Enabled Solutions for Traffic State Estimation and Prediction

合作研究:数据中毒攻击和基于基础设施的交通状态估计和预测解决方案

基本信息

  • 批准号:
    2326340
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This award will support research to investigate "data poisoning" attacks in transportation systems and develop new defense methods to enhance transportation cybersecurity. With ubiquitous data and widely applied data-driven methods in transportation, data poisoning attacks are becoming a critical cybersecurity threat to traffic state estimation and prediction (TSEP), as well as to decision making related to vehicle fleet management and traffic control. This research will have profound societal benefits and impacts by identifying new data poisoning attacks and developing novel defense methods on essential transportation applications. The research will also help raise awareness of data security and facilitate the development of infrastructure-enabled solutions to strengthen transportation security. The team will integrate research results into existing and new courses and will advise both graduate and undergraduate students, especially students from groups underrepresented in science and engineering research, to participate in cutting-edge research. The project team members will participate in multiple outreach programs by providing inputs in science and engineering from this project to K-12 students, especially high school students. The team will also convey research findings to transportation agencies, the academic community, and industry partners. The researchers will transfer research findings to practice, to make significant impacts in the real world. This research will develop a new paradigm in designing transportation data poisoning attacks and developing innovative defense solutions to ensure transportation data security. Data poisoning attacks are first formulated as sensitivity analysis of optimization problems over data perturbations (attacks). Lipschitz continuity-based analysis methods and semi-derivative based algorithms will be developed to help design attack models that are more general and applicable to transportation applications. The team will also develop approximation schemes of the complex objective functions and/or constraints of learning models and study the transferability of attack methods on deep learning models. To defend against the attacks, an infrastructure-enabled defense framework will be developed by leveraging existing and newly deployed secure infrastructure data/information to detect and mitigate attacks. This new defense framework will help develop a secure data network to effectively defend against different attacks on various applications. The research will also provide useful insights to study attacks and develop novel defense methods in other engineering and science fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将支持研究调查运输系统中的“数据中毒”攻击,并开发新的防御方法来加强运输网络安全。随着无处不在的数据和广泛应用的数据驱动方法在交通运输中,数据中毒攻击正在成为交通状态估计和预测(TSEP)以及与车队管理和交通控制相关的决策的关键网络安全威胁。这项研究将通过识别新的数据中毒攻击和开发新的防御方法来产生深远的社会效益和影响。该研究还将有助于提高人们对数据安全的认识,并促进开发基于基础设施的解决方案,以加强运输安全。该团队将把研究成果整合到现有和新课程中,并建议研究生和本科生,特别是来自科学和工程研究中代表性不足的群体的学生参与前沿研究。项目团队成员将通过向K-12学生,特别是高中生提供科学和工程方面的投入,参与多个外展计划。该团队还将向运输机构、学术界和行业合作伙伴传达研究结果。研究人员将把研究成果转化为实践,在真实的世界中产生重大影响。这项研究将为设计交通数据中毒攻击和开发创新的防御解决方案以确保交通数据安全提供新的范例。数据中毒攻击首先被公式化为优化问题对数据扰动(攻击)的敏感性分析。将开发基于Lipschitz连续性的分析方法和基于半导数的算法,以帮助设计更通用且适用于运输应用的攻击模型。该团队还将开发学习模型的复杂目标函数和/或约束的近似方案,并研究攻击方法对深度学习模型的可移植性。为了防御攻击,将利用现有和新部署的安全基础设施数据/信息来检测和减轻攻击,从而开发支持基础设施的防御框架。这个新的防御框架将有助于开发一个安全的数据网络,以有效地防御各种应用程序的不同攻击。该研究还将为其他工程和科学领域的攻击研究和开发新的防御方法提供有用的见解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuegang Ban其他文献

Analysis of Differences in ECG Characteristics for Different Types of Drivers under Anxiety
不同类型驾驶员焦虑状态心电图特征差异分析
  • DOI:
    10.1155/2021/6640527
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Yongqing Guo;Xiaoyuan Wang;Qing Xu;Quan Yuan;Chenglin Bai;Xuegang Ban
  • 通讯作者:
    Xuegang Ban
Real-time route diversion control in a model predictive control framework with multiple objectives: Traffic efficiency, emission reduction and fuel economy
模型预测控制框架中的实时路线改道控制具有多个目标:交通效率、减排和燃油经济性
Simulation of Carbon Emission for Heavy-Duty Vehicle Queuing Systems
重型车辆排队系统碳排放仿真
The Emergence Characteristics of Driver’s Intentions Influenced by Different Emotions
不同情绪影响驾驶员意图的显现特征
  • DOI:
    10.3390/su132313292
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoyuan Wang;Yongqing Guo;Chenglin Bai;Quan Yuan;Shanliang Liu;Xuegang Ban
  • 通讯作者:
    Xuegang Ban
Correcting the Market Failure in Work Trips with Work Rescheduling: An Analysis Using Bi-level Models for the Firm-workers Interplay
通过工作重新安排来纠正工作旅行中的市场失灵:使用双层模型进行企业-工人相互作用的分析
  • DOI:
    10.1007/s11067-013-9213-7
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Wilfredo F. Yushimito;Xuegang Ban;J. Holguín
  • 通讯作者:
    J. Holguín

Xuegang Ban的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuegang Ban', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Privately Collecting and Analyzing V2X Data for Urban Traffic Modeling
合作研究:SaTC:核心:小型:私下收集和分析用于城市交通建模的 V2X 数据
  • 批准号:
    2034615
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Bias Modeling and Estimation of Networked Transportation Data
合作研究:网络交通数据的偏差建模和估计
  • 批准号:
    1825053
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: Using Mobile Sensors for Traffic Knowledge Extraction and Dynamic Network Management
职业:使用移动传感器进行交通知识提取和动态网络管理
  • 批准号:
    1719551
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Transportation Network Identification: Information Fusion via Stochastic Optimization
合作研究:交通网络识别:通过随机优化进行信息融合
  • 批准号:
    1719548
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Transportation Network Identification: Information Fusion via Stochastic Optimization
合作研究:交通网络识别:通过随机优化进行信息融合
  • 批准号:
    1537700
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: Using Mobile Sensors for Traffic Knowledge Extraction and Dynamic Network Management
职业:使用移动传感器进行交通知识提取和动态网络管理
  • 批准号:
    1055555
  • 财政年份:
    2011
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
BECS Collaborative Research: Modeling the Dynamics of Traffic User Equilibria Using Differential Variational Inequalities
BECS 协作研究:使用微分变分不等式对交通用户均衡动态进行建模
  • 批准号:
    1024647
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Mobile Sensors as Traffic Probes - Addressing Transportation Modeling and Privacy Protection in an Integrated Framework
协作研究:移动传感器作为交通探针 - 在集成框架中解决交通建模和隐私保护问题
  • 批准号:
    1031452
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了