Collaborative Research: Bias Modeling and Estimation of Networked Transportation Data
合作研究:网络交通数据的偏差建模和估计
基本信息
- 批准号:1825053
- 负责人:
- 金额:$ 31.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will contribute to national prosperity and economic welfare by advancing data analytics applied to transportation systems. While big data are increasingly used in transportation and other disciplines in science and engineering, the collected data may come with errors and biases, and therefore may not provide an authentic representation of the entire population. Biased data can lead to ineffectual policies and suboptimal decisions for transportation infrastructure related investment, planning, and operations. As the transportation field undergoes a major transformation towards smart and autonomous systems, data quality is critical in ensuring that public welfare results from these investments. This award supports a comprehensive investigation and fundamental understanding of the sources, taxonomy, and modeling approaches of data biases and the PIs will develop novel solutions to address the issues. The project team will work closely with transportation practitioners to test and validate the findings of this research, and transfer scientific knowledge to planning and operation practices. The award also supports efforts to broaden STEM interest in engineering and data sciences through updated curricula and virtual seminars, and to provide opportunities for underrepresented communities.This research will develop theories, models, and algorithms of a novel NETwork-based, Data-Assisted Transportation Analysis (NetData) framework for data bias modeling and estimation, which can recognize and utilize the underlying network structure and processes in the data. The NetData framework will explicitly capture bias and integrate data with proper network models, in both deterministic and stochastic settings and under realistic network considerations such as dynamic and multimodal networks. This research fills an important gap in transportation data sciences and practice in modeling and addressing data bias. The analytical framework leverages and extends state-of-the-art techniques from transportation network science, stochastic optimization, and data science. It will produce algorithms to integrate data from multiple sources to help conduct more accurate and reliable analysis of travel patterns and decisions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将通过推进应用于交通系统的数据分析,为国家繁荣和经济福利做出贡献。 虽然大数据越来越多地用于运输和其他科学和工程学科,但收集的数据可能存在错误和偏见,因此可能无法真实地代表整个人口。 有偏见的数据可能导致交通基础设施相关投资、规划和运营的无效政策和次优决策。 随着交通领域向智能和自动化系统的重大转型,数据质量对于确保这些投资带来的公共福利至关重要。该奖项支持对数据偏差的来源、分类和建模方法进行全面调查和基本理解,PI将开发新的解决方案来解决这些问题。项目团队将与交通从业人员密切合作,测试和验证这项研究的结果,并将科学知识转移到规划和运营实践中。该奖项还支持通过更新的课程和虚拟研讨会扩大STEM对工程和数据科学的兴趣,并为代表性不足的社区提供机会。这项研究将开发基于网络的新型数据辅助交通分析(NetData)框架的理论,模型和算法,用于数据偏差建模和估计,其可以识别和利用数据中的底层网络结构和处理。NetData框架将明确地捕捉偏差,并将数据与适当的网络模型集成在一起,无论是在确定性和随机性环境中,还是在动态和多模式网络等现实网络考虑因素下。这项研究填补了交通数据科学以及建模和解决数据偏差实践中的一个重要空白。该分析框架利用并扩展了交通网络科学,随机优化和数据科学的最新技术。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mixed traffic flow of human driven vehicles and automated vehicles on dynamic transportation networks
- DOI:10.1016/j.trc.2021.103159
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Qiangqiang Guo;X. Ban;H. M. A. Aziz
- 通讯作者:Qiangqiang Guo;X. Ban;H. M. A. Aziz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuegang Ban其他文献
Analysis of Differences in ECG Characteristics for Different Types of Drivers under Anxiety
不同类型驾驶员焦虑状态心电图特征差异分析
- DOI:
10.1155/2021/6640527 - 发表时间:
2021-08 - 期刊:
- 影响因子:1.8
- 作者:
Yongqing Guo;Xiaoyuan Wang;Qing Xu;Quan Yuan;Chenglin Bai;Xuegang Ban - 通讯作者:
Xuegang Ban
Real-time route diversion control in a model predictive control framework with multiple objectives: Traffic efficiency, emission reduction and fuel economy
模型预测控制框架中的实时路线改道控制具有多个目标:交通效率、减排和燃油经济性
- DOI:
10.1016/j.trd.2016.08.013 - 发表时间:
2016-10 - 期刊:
- 影响因子:0
- 作者:
Lihua Luo;Ying-En Ge;Fangwei Zhang;Xuegang Ban - 通讯作者:
Xuegang Ban
Simulation of Carbon Emission for Heavy-Duty Vehicle Queuing Systems
重型车辆排队系统碳排放仿真
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yao Yu;Jialin Zhai;Xuegang Ban;Jinxian Weng - 通讯作者:
Jinxian Weng
Correcting the Market Failure in Work Trips with Work Rescheduling: An Analysis Using Bi-level Models for the Firm-workers Interplay
通过工作重新安排来纠正工作旅行中的市场失灵:使用双层模型进行企业-工人相互作用的分析
- DOI:
10.1007/s11067-013-9213-7 - 发表时间:
2013 - 期刊:
- 影响因子:2.4
- 作者:
Wilfredo F. Yushimito;Xuegang Ban;J. Holguín - 通讯作者:
J. Holguín
The Emergence Characteristics of Driver’s Intentions Influenced by Different Emotions
不同情绪影响驾驶员意图的显现特征
- DOI:
10.3390/su132313292 - 发表时间:
2021-12 - 期刊:
- 影响因子:0
- 作者:
Xiaoyuan Wang;Yongqing Guo;Chenglin Bai;Quan Yuan;Shanliang Liu;Xuegang Ban - 通讯作者:
Xuegang Ban
Xuegang Ban的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuegang Ban', 18)}}的其他基金
Collaborative Research: Data Poisoning Attacks and Infrastructure-Enabled Solutions for Traffic State Estimation and Prediction
合作研究:数据中毒攻击和基于基础设施的交通状态估计和预测解决方案
- 批准号:
2326340 - 财政年份:2023
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Privately Collecting and Analyzing V2X Data for Urban Traffic Modeling
合作研究:SaTC:核心:小型:私下收集和分析用于城市交通建模的 V2X 数据
- 批准号:
2034615 - 财政年份:2021
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
CAREER: Using Mobile Sensors for Traffic Knowledge Extraction and Dynamic Network Management
职业:使用移动传感器进行交通知识提取和动态网络管理
- 批准号:
1719551 - 财政年份:2016
- 资助金额:
$ 31.77万 - 项目类别:
Continuing Grant
Collaborative Research: Transportation Network Identification: Information Fusion via Stochastic Optimization
合作研究:交通网络识别:通过随机优化进行信息融合
- 批准号:
1719548 - 财政年份:2016
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
Collaborative Research: Transportation Network Identification: Information Fusion via Stochastic Optimization
合作研究:交通网络识别:通过随机优化进行信息融合
- 批准号:
1537700 - 财政年份:2015
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
CAREER: Using Mobile Sensors for Traffic Knowledge Extraction and Dynamic Network Management
职业:使用移动传感器进行交通知识提取和动态网络管理
- 批准号:
1055555 - 财政年份:2011
- 资助金额:
$ 31.77万 - 项目类别:
Continuing Grant
BECS Collaborative Research: Modeling the Dynamics of Traffic User Equilibria Using Differential Variational Inequalities
BECS 协作研究:使用微分变分不等式对交通用户均衡动态进行建模
- 批准号:
1024647 - 财政年份:2010
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
Collaborative Research: Mobile Sensors as Traffic Probes - Addressing Transportation Modeling and Privacy Protection in an Integrated Framework
协作研究:移动传感器作为交通探针 - 在集成框架中解决交通建模和隐私保护问题
- 批准号:
1031452 - 财政年份:2010
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Strategies to Mitigate Implicit Bias and Promote an Ethos of Care in the Research Enterprise: A Convening
协作研究:会议:减轻隐性偏见并促进研究企业关怀精神的策略:召开会议
- 批准号:
2324401 - 财政年份:2024
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Strategies to Mitigate Implicit Bias and Promote an Ethos of Care in the Research Enterprise: A Convening
协作研究:会议:减轻隐性偏见并促进研究企业关怀精神的策略:召开会议
- 批准号:
2324402 - 财政年份:2024
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
- 批准号:
2302969 - 财政年份:2023
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
- 批准号:
2302968 - 财政年份:2023
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Medium: Modeling and Mitigating Confirmation Bias in Visual Data Analysis
合作研究:HCC:媒介:可视化数据分析中的建模和减轻确认偏差
- 批准号:
2311575 - 财政年份:2023
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
- 批准号:
2302970 - 财政年份:2023
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
Collaborative Research: Developing and Researching K-12 Teacher Leaders Enacting Anti-bias Mathematics Education
合作研究:培养和研究 K-12 教师领导者实施反偏见数学教育
- 批准号:
2302773 - 财政年份:2023
- 资助金额:
$ 31.77万 - 项目类别:
Continuing Grant
Collaborative Research: HCC: Medium: Modeling and Mitigating Confirmation Bias in Visual Data Analysis
合作研究:HCC:媒介:可视化数据分析中的建模和减轻确认偏差
- 批准号:
2311574 - 财政年份:2023
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Neural and perceptual mechanisms that bias mate choice in complex signaling environments
合作研究:NSF-BSF:复杂信号环境中影响择偶选择的神经和感知机制
- 批准号:
2154204 - 财政年份:2022
- 资助金额:
$ 31.77万 - 项目类别:
Continuing Grant
Collaborative Research: The Angry Crowd Bias: Social, Cognitive, and Perceptual Mechanisms
合作研究:愤怒的人群偏见:社会、认知和感知机制
- 批准号:
2141289 - 财政年份:2022
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant