Novel Discretization Schemes for Fully Nonlinear Partial Differential Equations
全非线性偏微分方程的新颖离散化方案
基本信息
- 批准号:1238711
- 负责人:
- 金额:$ 11.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to develop, analyze, and implement the finite element method for fully nonlinear second order partial differential equations (PDEs). The research is based on a recent discovery of the PI that Lagrange finite element methods and discontinuous Galerkin methods can be used to approximate the Monge-Ampere equation, the prototypical fully nonlinear second order PDE. As these methods are simple to implement, the computation of the highly nonlinear problem can be performed efficiently and accurately. The project will expand on these results to obtain simple, efficient, yet accurate numerical schemes for a general class of fully nonlinear equations. In addition, the PI will develop and analyze various discretization methods including mixed finite element methods, local discontinuous Galerkin methods, hybridizable Galerkin methods, and Petrov Galerkin methods.Mathematical modeling plays a key role in the investigation and understanding of many phenomena occurring in the natural sciences, the social sciences and engineering. Yet even for simple problems, closed form solutions are unavailable, and therefore their numerical approximations are the only viable option. As the problems become ever more complex, the need for novel computational methods and innovative analysis becomes imperative to put the United States in the forefront in science and engineering. The class of problems studied in this project arise in numerous mathematical modeling applications including weather phenomena, determining the initial shape of the universe, optimal reflector design, differential geometry, optimal transport, mathematical finance, image processing, and mesh generation. Despite their significance in the physical sciences and pure and applied mathematics, the numerical approximation of these problems remains a relatively untouched area. Therefore, there is a growing need to develop accurate schemes for these types of equations. As progress of solving any of these application problems largely depends on progress of solving their governing equations, and since numerical methods for these equations are still in their infancy, any progress in the design, implementation, and convergence analysis will have an immediate impact in advancing these application areas.
这个项目的目的是开发,分析和实现完全非线性二阶偏微分方程(PDE)的有限元方法。 该研究是基于最近发现的PI,拉格朗日有限元方法和间断Galerkin方法可以用来近似Monge-Ampere方程,原型完全非线性二阶偏微分方程。 由于这些方法实现简单,可以高效、准确地进行高度非线性问题的计算。 该项目将扩展这些结果,以获得简单,高效,但准确的数值方案的一般类完全非线性方程。 此外,PI将开发和分析各种离散方法,包括混合有限元方法,局部间断Galerkin方法,杂交Galerkin方法和Petrov Galerkin方法。数学建模在自然科学,社会科学和工程中发生的许多现象的调查和理解中起着关键作用。 然而,即使是简单的问题,封闭形式的解决方案是不可用的,因此,他们的数值近似是唯一可行的选择。随着问题变得越来越复杂,对新的计算方法和创新分析的需求变得势在必行,以使美国在科学和工程领域处于领先地位。 在这个项目中研究的问题出现在许多数学建模应用,包括天气现象,确定宇宙的初始形状,最佳反射器设计,微分几何,最佳运输,数学金融,图像处理和网格生成。 尽管它们在物理科学、纯数学和应用数学中具有重要意义,但这些问题的数值近似仍然是一个相对未触及的领域。 因此,越来越需要为这些类型的方程开发精确的方案。 由于解决这些应用问题的进展在很大程度上取决于解决其控制方程的进展,并且由于这些方程的数值方法仍处于起步阶段,因此在设计,实施和收敛性分析方面的任何进展都将对推进这些应用领域产生直接影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Neilan其他文献
A $$C^0$$ interior penalty method for a von Kármán plate
- DOI:
10.1007/s00211-016-0817-y - 发表时间:
2016-07-12 - 期刊:
- 影响因子:2.200
- 作者:
Susanne C. Brenner;Michael Neilan;Armin Reiser;Li-Yeng Sung - 通讯作者:
Li-Yeng Sung
A General Degree Divergence-Free Finite Element Method for the Two-Dimensional Stokes Problem on Smooth Domains
- DOI:
10.1007/s10915-024-02674-3 - 发表时间:
2024-09-23 - 期刊:
- 影响因子:3.300
- 作者:
Rebecca Durst;Michael Neilan - 通讯作者:
Michael Neilan
Michael Neilan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Neilan', 18)}}的其他基金
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
- 批准号:
2309425 - 财政年份:2023
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
Advancements in Divergence-Free Approximations for Incompressible Flow
不可压缩流动的无散近似的进展
- 批准号:
2011733 - 财政年份:2020
- 资助金额:
$ 11.62万 - 项目类别:
Continuing Grant
Structure-Preserving Discretizations: Finite Elements, Splines, and Isogeometric Analysis
结构保持离散化:有限元、样条曲线和等几何分析
- 批准号:
1914795 - 财政年份:2019
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
Finite Element Methods for Incompressible Flow Yielding Divergence-Free Approximations
不可压缩流产生无散近似的有限元方法
- 批准号:
1719829 - 财政年份:2017
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
Nonlinear PDE's, Numerical Analysis, and Applications; October 2-3, 2015; Pittsburgh, PA
非线性偏微分方程、数值分析和应用;
- 批准号:
1541585 - 财政年份:2015
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
Finite element methods for non-divergence form partial differential equations and the Hamilton-Jacobi-Bellman equation
非散度形式偏微分方程和 Hamilton-Jacobi-Bellman 方程的有限元方法
- 批准号:
1417980 - 财政年份:2014
- 资助金额:
$ 11.62万 - 项目类别:
Continuing Grant
Novel Discretization Schemes for Fully Nonlinear Partial Differential Equations
全非线性偏微分方程的新颖离散化方案
- 批准号:
1115421 - 财政年份:2011
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
相似海外基金
High Order Schemes: Bound Preserving, Moving Boundary, Stochastic Effects and Efficient Time Discretization
高阶方案:保界、移动边界、随机效应和高效时间离散化
- 批准号:
2309249 - 财政年份:2023
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
Analysis of geometric discretization methods
几何离散化方法分析
- 批准号:
RGPIN-2020-04389 - 财政年份:2022
- 资助金额:
$ 11.62万 - 项目类别:
Discovery Grants Program - Individual
Discretization of molecular liquid dynamics
分子液体动力学的离散化
- 批准号:
22K03553 - 财政年份:2022
- 资助金额:
$ 11.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
- 批准号:
RGPIN-2020-03909 - 财政年份:2022
- 资助金额:
$ 11.62万 - 项目类别:
Discovery Grants Program - Individual
Analysis of geometric discretization methods
几何离散化方法分析
- 批准号:
RGPIN-2020-04389 - 财政年份:2021
- 资助金额:
$ 11.62万 - 项目类别:
Discovery Grants Program - Individual
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
- 批准号:
RGPIN-2020-03909 - 财政年份:2021
- 资助金额:
$ 11.62万 - 项目类别:
Discovery Grants Program - Individual
Robust Least Squares Discretization for Mixed Variational Formulations
混合变分公式的稳健最小二乘离散化
- 批准号:
2011615 - 财政年份:2020
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
Mathematical and Numerical Analysis of Asymptotically Compatible Discretization of Nonlocal Models
非局部模型渐近兼容离散化的数学和数值分析
- 批准号:
2012562 - 财政年份:2020
- 资助金额:
$ 11.62万 - 项目类别:
Continuing Grant
Development of analysis and discretization in differential geometry
微分几何分析和离散化的发展
- 批准号:
20K03585 - 财政年份:2020
- 资助金额:
$ 11.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Local Mesh Refinement for Flow Analysis with Isogeometric Discretization and Topology Change
使用等几何离散化和拓扑变化进行流动分析的局部网格细化
- 批准号:
20K22401 - 财政年份:2020
- 资助金额:
$ 11.62万 - 项目类别:
Grant-in-Aid for Research Activity Start-up