Algorithms for Large-Scale Nonlinear Eigenvalue Problems: Interpolation, Stability, Transient Dynamics

大规模非线性特征值问题的算法:插值、稳定性、瞬态动力学

基本信息

项目摘要

Dynamical systems are mathematical models of the changing world. To understand such a model, one must describe how the system will evolve in time. Of interest is whether the solution grows with time, and whether the short-term behavior of the system is different from the behavior over a large-time window. This project aims to develop tools to help scientists and engineers better analyze a challenging class of models in which the system's current rate-of-change is dictated by its configuration at some time in the recent past, models known as "delay systems." Compelling examples come from biology, where this delay could correspond to gestation in a population, the incubation of a disease, or the time for a pill to dissolve. In many important scenarios, highly accurate models require thousands or millions of variables. This project will design high-performance computing algorithms to efficiently assess the behavior of such systems.The research team will develop a new class of algorithms that are derived from interpolation techniques for model reduction of large-scale dynamical systems, for solving important large-scale nonlinear eigenvalue problems. Nonlinear eigenvalue problems play an increasingly important role in many applications, including the stability analysis of delay differential equations. Such problems pose a great challenge to computation: the number of eigenvalues is often infinite, even when the dimension of the problem is finite. This project's interpolation-based techniques hold the promise of accurately modeling nonlinear operators over a broad region of the complex plane, resulting in algorithms that are both more efficient and more robust than existing methods. Combining interpolation with structure-preserving subspace projection has the potential to approximate a much larger number of eigenvalues than possible with traditional methods. To understand the performance of these new algorithms and to improve their speed, the project will also address convergence theory; for greater efficiency the project will explore inexact solution methods. Improved solvers for the nonlinear eigenvalue problem will inform development of the other two main aspects of this project: determination of critical stability transitions as a function of parameters (such as the time delays) in differential equations, and an enhanced understanding of the transient behavior of dynamical systems associated with nonlinear eigenvalue problems. This project is expected to lead to substantial improvements in algorithms and analysis for the nonlinear eigenvalue problem and related stability questions.
动力系统是不断变化的世界的数学模型。要理解这样的模型,必须描述系统将如何在时间上演变。令人感兴趣的是解决方案是否随时间增长,以及系统的短期行为是否不同于较大时间窗口的行为。该项目旨在开发工具,帮助科学家和工程师更好地分析一类具有挑战性的模型,在这些模型中,系统当前的变化率由其在最近过去某个时候的配置决定,这些模型被称为“延迟系统”。令人信服的例子来自生物学,这种延迟可能与种群中的怀孕、疾病的潜伏期或药片溶解的时间相对应。在许多重要场景中,高度精确的模型需要数千或数百万个变量。这个项目将设计高性能的计算算法来有效地评估这类系统的行为。研究团队将开发一类新的算法,这些算法源于大规模动力系统的内插技术,用于求解重要的大规模非线性特征值问题。非线性特征值问题在许多应用中发挥着越来越重要的作用,包括时滞微分方程的稳定性分析。这样的问题给计算带来了很大的挑战:即使问题的维度是有限的,特征值的数量也往往是无限的。该项目的基于内插的技术有望在复杂平面的大范围内精确地建模非线性算子,从而产生比现有方法更高效、更健壮的算法。与传统方法相比,结合内插法和保构子空间投影方法有可能逼近更多数量的特征值。为了了解这些新算法的性能并提高它们的速度,该项目还将讨论收敛理论;为了提高效率,该项目将探索不精确的求解方法。改进的非线性特征值问题的求解器将为这个项目的另外两个主要方面的发展提供信息:确定临界稳定性转变为微分方程中参数(如时滞)的函数,以及增强对与非线性特征值问题相关的动力系统的暂态行为的理解。这个项目有望在非线性特征值问题和相关的稳定性问题的算法和分析方面带来实质性的改进。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polynomial Preconditioned Arnoldi with Stability Control
具有稳定性控制的多项式预调节 Arnoldi
  • DOI:
    10.1137/19m1302430
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Embree, Mark;Loe, Jennifer A.;Morgan, Ronald
  • 通讯作者:
    Morgan, Ronald
Kolmogorov n-widths for linear dynamical systems
线性动力系统的柯尔莫哥洛夫 n 宽度
  • DOI:
    10.1007/s10444-019-09701-0
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Unger, Benjamin;Gugercin, Serkan
  • 通讯作者:
    Gugercin, Serkan
Sampling-free model reduction of systems with low-rank parameterization
低秩参数化系统的免采样模型简化
  • DOI:
    10.1007/s10444-020-09825-8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Beattie, Christopher;Gugercin, Serkan;Tomljanović, Zoran
  • 通讯作者:
    Tomljanović, Zoran
Spectral characterization of magic angles in twisted bilayer graphene
  • DOI:
    10.1103/physrevb.103.165113
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Simon Becker;M. Embree;Jens Wittsten;M. Zworski
  • 通讯作者:
    Simon Becker;M. Embree;Jens Wittsten;M. Zworski
H2(tf) Optimality Conditions for a Finite-time Horizon
  • DOI:
    10.1016/j.automatica.2019.108604
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Klajdi Sinani;S. Gugercin
  • 通讯作者:
    Klajdi Sinani;S. Gugercin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Embree其他文献

Ritz Value Localization for Non-Hermitian Matrices
非厄米矩阵的 Ritz 值本地化
  • DOI:
    10.1137/120872693
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Russell L. Carden;Mark Embree
  • 通讯作者:
    Mark Embree
The Most Widely Cited Papers in BIT
  • DOI:
    10.1023/a:1022304821474
  • 发表时间:
    2000-12-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Mark Embree
  • 通讯作者:
    Mark Embree
Parallel solution of large-scale free surface viscoelastic flows via sparse approximate inverse preconditioning
  • DOI:
    10.1016/j.jnnfm.2008.09.005
  • 发表时间:
    2009-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zenaida Castillo;Xueying Xie;Danny C. Sorensen;Mark Embree;Matteo Pasquali
  • 通讯作者:
    Matteo Pasquali

Mark Embree的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Embree', 18)}}的其他基金

Design and Identification of Dissipative Bodies
耗散体的设计和识别
  • 批准号:
    0505893
  • 财政年份:
    2005
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Design and Analysis of Restarted Iterative Methods for Linear Systems, Eigenvalue Problems, and Model Reduction
职业:线性系统、特征值问题和模型简化的重新启动迭代方法的设计和分析
  • 批准号:
    0449973
  • 财政年份:
    2005
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
  • 批准号:
    2327013
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
NOVEL DECOMPOSITION ALGORITHMS FOR GUARANTEED GLOBAL OPTIMIZATION OF LARGE-SCALE NONCONVEX STOCHASTIC PROGRAMS
确保大规模非凸随机程序全局优化的新颖分解算法
  • 批准号:
    2232588
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311274
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311275
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
OAC Core: High Performance Computing Algorithms and Software for large-scale Mass Spectrometry based Omics
OAC Core:基于大规模质谱组学的高性能计算算法和软件
  • 批准号:
    2312599
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Large-Scale Models and Algorithms in Diffeomorphic Shape and Image Registration
微分同胚形状和图像配准中的大规模模型和算法
  • 批准号:
    2309683
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
  • 批准号:
    2327619
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Harnessing Interference with Deep Learning: Algorithms and Large-Scale Experiments
职业:利用深度学习的干扰:算法和大规模实验
  • 批准号:
    2239524
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2348306
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Optimization algorithms for large-scale bus and train unit scheduling
大规模公交列车编组调度优化算法
  • 批准号:
    567169-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了