Modeling, Analysis, and Computation for Water-Drive Oil Recovery
水驱采油的建模、分析和计算
基本信息
- 批准号:1720489
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Accurate mathematical analysis and efficient numerical methods play an increasingly important role in studying partial differential equation models in the petroleum industry. The goal of this project is to carry out research in mathematical analysis and design of high-order-accuracy numerical methods for the modified Buckley-Leverett (MBL) model, which is a partial differential equation model for water-drive secondary underground oil recovery. When an underground source of oil is tapped, a certain amount of oil flows out on its own due to pressure difference. After the flow stops, there is typically a significant amount of oil still left in the ground. One standard method of "secondary recovery" is to pump water into the oil field through an injection well, forcing oil out through a production well. In this process there will be a water and oil mixture created. The MBL equation models the evolution of the oil saturation in the entire oil reservoir, in particular, at the production well.This research project combines mathematical analysis, design of numerical schemes, and computational techniques. The mathematical analysis is based on partial differential equation theory, and the numerical methods under development are based on state-of-the-art discontinuous Galerkin (DG) schemes. The results will be cross-validated using data from laboratory experiments. The investigator plans to carry out the following specific research tasks: (1) extend the well-developed 1D MBL model to 2D and 3D fully nonlinear and linearized MBL models; (2) determine the approximation error induced by employing the MBL model on a spatial domain smaller than an entire reservoir; (3) design high-order-accuracy discontinuous Galerkin (DG) methods to numerically solve the MBL model; (4) study the nonlinear asymptotic stability of the traveling-wave solutions of the MBL model; (5) employ experimental data to cross-validate both the analytical and computational conclusions. The project involves a postdoctoral associated and a graduate student in the research. The investigator also plans to develop a new graduate-level course on numerical solutions to water-drive oil recovery models.
准确的数学分析和有效的数值方法在研究石油行业的部分微分方程模型中起着越来越重要的作用。该项目的目的是在修改后的Buckley-Leverett(MBL)模型的数学分析和设计方面进行数学分析和设计研究,这是水驱动次要地下油回收的部分微分方程模型。当挖掘地下石油来源时,由于压力差,一定量的油自行流出。流量停止后,通常仍有大量的油在地面上。 “次级恢复”的一种标准方法是通过注射井将水泵入油田,迫使油通过生产井出去。在此过程中,将产生水和油混合物。 MBL方程对整个储油油中油饱和度的演变进行了建模,尤其是在生产井中。该研究项目结合了数学分析,数值方案的设计和计算技术。数学分析基于部分微分方程理论,并且正在开发的数值方法基于最新的不连续Galerkin(DG)方案。结果将使用实验室实验的数据进行交叉验证。研究人员计划执行以下特定的研究任务:(1)将发达的1D MBL模型扩展到2D和3D,完全非线性和线性化MBL模型; (2)通过在小于整个储层的空间结构域上使用MBL模型来确定引起的近似误差; (3)设计高阶 - 准确性不连续的盖尔金(DG)方法,以数值求解MBL模型; (4)研究MBL模型行进波溶液的非线性渐近稳定性; (5)采用实验数据来跨验证分析和计算结论。该项目涉及博士后相关的研究和研究生。研究人员还计划开发一门新的研究生级课程,以用于水驱动石油回收模型的数值解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Wang其他文献
The stromal cell-derived factor 1/C-X-C chemokine receptor type 4 axis is important in neutrophil migration caused by cardiopulmonary bypass in children.
基质细胞衍生因子 1/C-X-C 趋化因子受体 4 型轴在儿童体外循环引起的中性粒细胞迁移中发挥重要作用。
- DOI:
10.1093/icvts/ivx358 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
R. Tu;Yanhua Peng;Ying Wang;Xixi Tang;Shouyong Wang - 通讯作者:
Shouyong Wang
Research on the Time-Delay Characteristics of the Laser-Triggered Vacuum Switch
激光触发真空开关延时特性研究
- DOI:
10.1109/tps.2015.2409196 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xiaopo Mao;Zhenghao He;Xinya Xu;Ying Wang;Wenfang Fan;Huazhong Lin;Siqi Song;Yuqing Wang - 通讯作者:
Yuqing Wang
Degradation of ofloxacin in aqueous solution with UV/H2O2
UV/H2O2 降解氧氟沙星水溶液
- DOI:
10.5004/dwt.2017.20636 - 发表时间:
2017 - 期刊:
- 影响因子:1.1
- 作者:
Honghai Xue;Chun Hu;Juwei Peng;Lining Wang;Ying Wang;Ning Ji;Xue Wen - 通讯作者:
Xue Wen
The compound Pascal model with dividends paid under random interest
随机利率下股息支付的复合帕斯卡模型
- DOI:
10.1016/j.spl.2012.03.037 - 发表时间:
2012-07 - 期刊:
- 影响因子:0
- 作者:
Xianmin Geng;Ying Wang - 通讯作者:
Ying Wang
In memory of Professor Biao Ding (1960-2015).
纪念丁彪教授(1960-2015)。
- DOI:
10.1111/jipb.12381 - 发表时间:
2015 - 期刊:
- 影响因子:11.4
- 作者:
A. Itaya;W. J. Lucas;Y. Qi;F. Qu;Ying Wang;Xuehua Zhong;Chun - 通讯作者:
Chun
Ying Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Wang', 18)}}的其他基金
CAREER: Non-volatile memory devices based on sliding ferroelectricity
职业:基于滑动铁电的非易失性存储器件
- 批准号:
2339093 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Structural insights into RNA promoters for RNA polymerase II-catalyzed RNA-templated transcription
RNA 聚合酶 II 催化 RNA 模板转录的 RNA 启动子的结构见解
- 批准号:
2350392 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Structural insights into RNA promoters for RNA polymerase II-catalyzed RNA-templated transcription
RNA 聚合酶 II 催化 RNA 模板转录的 RNA 启动子的结构见解
- 批准号:
2145967 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
I-Corps: Thermostable liquid formulations of mRNAs and mRNA lipid nano-particles pharmaceuticals
I-Corps:mRNA 和 mRNA 脂质纳米颗粒药物的耐热液体制剂
- 批准号:
2221899 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
An integrated physics-based and data-driven approach to structural condition identification
一种基于物理和数据驱动的结构状况识别综合方法
- 批准号:
EP/R021090/1 - 财政年份:2018
- 资助金额:
$ 14万 - 项目类别:
Research Grant
CAREER: Mathematical Analysis and Numerical Methods for the Underground Oil Recovery Models
职业:地下石油采收模型的数学分析和数值方法
- 批准号:
1752709 - 财政年份:2018
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
The 4th Annual Meeting of SIAM Central States Section
第四届SIAM中部国家分会年会
- 批准号:
1836035 - 财政年份:2018
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
相似国自然基金
适用于复杂外形产品的等几何造型理论及新型分析方法研究
- 批准号:61472111
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
基于拓扑结构分析的实体特征造型理论与方法
- 批准号:61402249
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
面向三维服装建模的形状分析与处理方法研究
- 批准号:61462051
- 批准年份:2014
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
复杂曲面造型理论及其在科学计算中的应用
- 批准号:11031007
- 批准年份:2010
- 资助金额:140.0 万元
- 项目类别:重点项目
几何计算中误差分析与控制问题的研究
- 批准号:60273012
- 批准年份:2002
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Computation-assisted discovery of bioactive minor cannabinoids from hemp
计算辅助从大麻中发现生物活性次要大麻素
- 批准号:
10791213 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
- 批准号:
2306992 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
- 批准号:
2306991 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
GOALI: CNS: Medium: Communication-Computation Co-Design for Rural Connectivtiy and Intelligence under Nonuniformity: Modeling, Analysis, and Implementation
目标:CNS:媒介:非均匀性下农村互联和智能的通信计算协同设计:建模、分析和实现
- 批准号:
2212565 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Standard Grant