CAREER: Mathematical Analysis and Numerical Methods for the Underground Oil Recovery Models
职业:地下石油采收模型的数学分析和数值方法
基本信息
- 批准号:1752709
- 负责人:
- 金额:$ 40.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This CAREER award supports a coordinated set of research and educational activities with the goals of elucidating the modeling and computation of underground oil recovery and stimulating the environment for research and study in applied analysis and computation at the University of Oklahoma. The project involves the Oklahoma Applied Analysis & Computing Group, a team consisting of undergraduate and graduate students, postdoc researchers, University of Oklahoma faculty, and faculty from Oklahoma's network of universities and colleges.Accurate mathematical analysis and efficient numerical methods play a more and more important role in studying partial differential equation (PDE) models in the petroleum industry. The goal of this project is to perform research in the mathematical analysis and high order accuracy numerical methods design for the PDE models describing the water-drive secondary underground oil recovery. The PI will combine mathematical analysis, numerical scheme design and computational techniques in our proposed research. The mathematical analysis is based on PDE theory, and the numerical methods proposed are based on state-of-the-art discontinuous Galerkin (DG) schemes. Furthermore, the obtained results will be cross-validated using data from laboratory experiments provided by the PI's academic collaborator, and oil reservoir simulation provided by the PI's industry collaborator. The interdisciplinary nature of this project will provide an environment of communication and collaboration, as well as provide an opportunity for students at different levels and with diverse background to apply mathematical and computational tools to investigate the underground oil recovery models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业奖支持一系列协调一致的研究和教育活动,目标是阐明地下石油开采的建模和计算,并刺激俄克拉荷马州大学应用分析和计算的研究环境。该项目涉及俄克拉荷马州应用分析计算小组,该小组由本科生和研究生、博士后研究人员、俄克拉荷马州大学教师以及来自俄克拉荷马州大学和学院网络的教师组成。精确的数学分析和高效的数值方法在研究石油工业中的偏微分方程(PDE)模型中发挥着越来越重要的作用。本课题的主要目的是研究水驱地下二次采油偏微分方程模型的数学分析和高精度数值方法设计。PI将结合联合收割机的数学分析,数值方案设计和计算技术,在我们提出的研究。数学分析是基于偏微分方程理论,提出的数值方法是基于国家的最先进的间断伽辽金(DG)计划。此外,将使用PI的学术合作者提供的实验室实验数据和PI的行业合作者提供的油藏模拟数据对所获得的结果进行交叉验证。该项目的跨学科性质将提供一个沟通和协作的环境,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Wang其他文献
Cross-shaped Hanning filter used in Fourier transform profilometry for accurate 3-D shape retrieval
用于傅里叶变换轮廓测量的十字形汉宁滤波器,用于精确的 3D 形状检索
- DOI:
10.1080/09500340.2021.1961903 - 发表时间:
2021-10 - 期刊:
- 影响因子:1.3
- 作者:
Xiangjun Kong;Fuzhong Bai;Yongxiang Xu;Ying Wang - 通讯作者:
Ying Wang
Prediction of Benefits of Special Taxi-Pooling Design for Large Transport Terminals: Case Study of Beijing West Railway Station
大型交通枢纽出租车专用拼车设计效益预测——以北京西站为例
- DOI:
10.3141/2542-05 - 发表时间:
2016-11 - 期刊:
- 影响因子:0
- 作者:
Weiran Yao;Ying Wang;Ning Wang;Gang Yang;Cheng Zhang - 通讯作者:
Cheng Zhang
Abnormal photoluminescence for GaAs/Al0.2Ga0.8As ring-like hybrid nanostructures grown by droplet epitaxy
液滴外延生长的GaAs/Al0.2Ga0.8As环状杂化纳米结构的异常光致发光
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.6
- 作者:
Linlin Su;Baolia Liang;Ying Wang;Qing Yuan;Qinglin Guo;shufang Wang;Guangsheng Fu;Diana L. Huffaker;Yuriy I. Mazur;Morgan E Ware;Yurii Maidaniuk;Gregory J. Salamo - 通讯作者:
Gregory J. Salamo
A recursive algorithm for constructing complicated Dixon matrices
构造复杂狄克逊矩阵的递归算法
- DOI:
10.1016/j.amc.2010.07.072 - 发表时间:
2010-11 - 期刊:
- 影响因子:4
- 作者:
Hongguang Fu;Ying Wang - 通讯作者:
Ying Wang
Growth of nanocrystalline β-Nb2N coating on 430 ferritic stainless steel bipolar plates of PEMFCs by disproportionation reaction of Nb(IV) ions in molten salt
通过 Nb(IV) 离子在熔盐中的歧化反应在 PEMFC 的 430 铁素体不锈钢双极板上生长纳米晶 β-Nb2N 涂层
- DOI:
10.1016/j.corsci.2020.108862 - 发表时间:
2020-09 - 期刊:
- 影响因子:8.3
- 作者:
Ling Xu Yang;Ling Xu Yang;Rui Jia Liu;Rui Jia Liu;Ying Wang;Ying Wang;Hui Jun Liu;Hui Jun Liu;Chao Liu Zeng;Chao Liu Zeng;Chao Fu;Chao Fu - 通讯作者:
Chao Fu
Ying Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Wang', 18)}}的其他基金
CAREER: Non-volatile memory devices based on sliding ferroelectricity
职业:基于滑动铁电的非易失性存储器件
- 批准号:
2339093 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant
Structural insights into RNA promoters for RNA polymerase II-catalyzed RNA-templated transcription
RNA 聚合酶 II 催化 RNA 模板转录的 RNA 启动子的结构见解
- 批准号:
2350392 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant
Structural insights into RNA promoters for RNA polymerase II-catalyzed RNA-templated transcription
RNA 聚合酶 II 催化 RNA 模板转录的 RNA 启动子的结构见解
- 批准号:
2145967 - 财政年份:2022
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant
I-Corps: Thermostable liquid formulations of mRNAs and mRNA lipid nano-particles pharmaceuticals
I-Corps:mRNA 和 mRNA 脂质纳米颗粒药物的耐热液体制剂
- 批准号:
2221899 - 财政年份:2022
- 资助金额:
$ 40.01万 - 项目类别:
Standard Grant
An integrated physics-based and data-driven approach to structural condition identification
一种基于物理和数据驱动的结构状况识别综合方法
- 批准号:
EP/R021090/1 - 财政年份:2018
- 资助金额:
$ 40.01万 - 项目类别:
Research Grant
The 4th Annual Meeting of SIAM Central States Section
第四届SIAM中部国家分会年会
- 批准号:
1836035 - 财政年份:2018
- 资助金额:
$ 40.01万 - 项目类别:
Standard Grant
Modeling, Analysis, and Computation for Water-Drive Oil Recovery
水驱采油的建模、分析和计算
- 批准号:
1720489 - 财政年份:2017
- 资助金额:
$ 40.01万 - 项目类别:
Standard Grant
相似海外基金
ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems
ARC 细胞系统数学分析卓越中心
- 批准号:
CE230100001 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
ARC Centres of Excellence
Mathematical Structure Analysis of Origami Metamaterials Using Dynamical Systems Theory
利用动力系统理论进行折纸超材料的数学结构分析
- 批准号:
23KJ0682 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
- 批准号:
EP/X035883/1 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Research Grant
Understanding the effect of mutations on cell behaviour in blood disorders through mathematical modelling and computational analysis
通过数学建模和计算分析了解突变对血液疾病细胞行为的影响
- 批准号:
2887435 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Studentship
Mathematical analysis of the steady flow of a viscous fluid depending on topological properties of the domain
根据域的拓扑特性对粘性流体的稳定流动进行数学分析
- 批准号:
22KJ2953 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
- 批准号:
10729420 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
- 批准号:
2246724 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant
Anomalous Diffusion: Physical Origins and Mathematical Analysis
反常扩散:物理起源和数学分析
- 批准号:
2306254 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant
Mathematical modeling and mathematical analysis of bacterial colony patterns
细菌菌落模式的数学建模和数学分析
- 批准号:
23K03225 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)