Representations of Riemannian Geometry Conference
黎曼几何会议代表
基本信息
- 批准号:1720590
- 负责人:
- 金额:$ 3.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides support for participation in the Representations of Riemannian Geometry Conference, to be held August 10-13, 2017 at Saint Joseph's University in Philadelphia, PA. The conference focuses on modern developments in global Riemannian geometry and the relationship between global metric geometry and topology. In the recent past these fields were very important in several breakthroughs in mathematics. For example, methods from both geometric analysis and metric geometry were crucial for the proof of the famous Poincaré conjecture, which goes back to the year 1900 and is the only one of the Millennium Prize problems to be solved to date. These areas of mathematics also have many applications, for example to physics, chemistry, engineering, and big data analysis. This funding will help to involve early-career mathematicians, including graduate students and postdocs. Special attention will be devoted to identifying and supporting women and other members of underrepresented groups. There will be speaking opportunities for junior researchers and graduate students, as well as a full day of introductory talks with the goal of attracting a broader audience. The conference will include speakers and participants who work in several research areas, thus further encouraging cross-collaborations. The conference will feature eleven plenary speakers with plenty of time between talks to encourage discussion and the interchange of ideas. Additionally, there will be three talks given by graduate students. The technical areas represented by the conference include several areas of global Riemannian geometry: symmetries of spaces with lower curvature bounds, special Riemannian metrics (especially Einstein metrics, Kähler metrics, and warped products), families of harmonic self-maps of spheres, foliations of spheres, projective and conformal geometry, homogeneous Ricci flow and isometric flow on orbit spaces, isoparametric hypersurfaces, path spaces, and closed geodesics. The overlap between these areas makes very real the possibility for cross-collaboration among the participants, and the conference activities will bring together leading experts and young researchers and students, facilitating the dissemination of recent research progress and discussion of future directions and open problems.The conference webpage is available at: http://palmer.wellesley.edu/~geom-conf/
该奖项为参加将于2017年8月10日至13日在宾夕法尼亚州费城圣约瑟夫大学举行的黎曼几何会议提供支持。会议重点讨论了全局黎曼几何的现代发展以及全局度量几何与拓扑学之间的关系。在最近的几次数学突破中,这些领域非常重要。例如,几何分析和度量几何的方法对著名的庞加莱猜想的证明至关重要,这个猜想可以追溯到1900年,是迄今为止唯一一个被解决的千年奖问题。这些数学领域也有许多应用,例如物理、化学、工程和大数据分析。这笔资金将帮助包括研究生和博士后在内的早期职业数学家。将特别注意查明和支持妇女和代表性不足群体的其他成员。将为初级研究人员和研究生提供演讲机会,以及一整天的介绍性演讲,目的是吸引更多的观众。会议将包括在多个研究领域工作的演讲者和参与者,从而进一步鼓励交叉合作。会议将有11位全体发言人,在发言间隙有充足的时间鼓励讨论和交换意见。此外,还会有三场由研究生主持的讲座。会议所代表的技术领域包括全球黎曼几何的几个领域:具有低曲率边界的空间的对称性,特殊黎曼度量(特别是爱因斯坦度量,Kähler度量和扭曲积),球的调和自映射族,球的叶状,射影和保形几何,齐次里奇流和轨道空间上的等距流,等参超曲面,路径空间和封闭测地。这些领域之间的重叠使得参与者之间的交叉合作成为可能,会议活动将汇集领先的专家和年轻的研究人员和学生,促进最新研究进展的传播和对未来方向和开放问题的讨论。会议网页可访问:http://palmer.wellesley.edu/~geom-conf/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Escher其他文献
Topological properties of Eschenburg spaces and 3-Sasakian manifolds
- DOI:
10.1007/s00208-007-0102-6 - 发表时间:
2007-04-19 - 期刊:
- 影响因子:1.400
- 作者:
Ted Chinburg;Christine Escher;Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Christine Escher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christine Escher', 18)}}的其他基金
COLLABORATIVE: Pacific Northwest Geometry Seminar
合作:太平洋西北几何研讨会
- 批准号:
1905391 - 财政年份:2019
- 资助金额:
$ 3.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Geometry and Topology
数学科学:几何和拓扑主题
- 批准号:
9403518 - 财政年份:1994
- 资助金额:
$ 3.62万 - 项目类别:
Standard Grant
相似海外基金
Stochastic processes in sub-Riemannian geometry
亚黎曼几何中的随机过程
- 批准号:
2246817 - 财政年份:2023
- 资助金额:
$ 3.62万 - 项目类别:
Standard Grant
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
- 批准号:
2203607 - 财政年份:2022
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant
Volume-collapsed manifolds in Riemannian geometry and geometric inference
黎曼几何中的体积塌陷流形和几何推理
- 批准号:
MR/W01176X/1 - 财政年份:2022
- 资助金额:
$ 3.62万 - 项目类别:
Fellowship
Geodesics in noncommutative Riemannian geometry
非交换黎曼几何中的测地线
- 批准号:
571975-2022 - 财政年份:2022
- 资助金额:
$ 3.62万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Rethinking Dynamic Wireless Networks through the Lens of Riemannian Geometry
职业:通过黎曼几何的视角重新思考动态无线网络
- 批准号:
2144297 - 财政年份:2022
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant
Minimal submanifolds in Riemannian geometry
黎曼几何中的最小子流形
- 批准号:
RGPIN-2020-04225 - 财政年份:2022
- 资助金额:
$ 3.62万 - 项目类别:
Discovery Grants Program - Individual
Minimal Filling Estimates in Riemannian Geometry
黎曼几何中的最小填充估计
- 批准号:
567948-2022 - 财政年份:2022
- 资助金额:
$ 3.62万 - 项目类别:
Postgraduate Scholarships - Doctoral
Geodesics in noncommutative Riemannian geometry
非交换黎曼几何中的测地线
- 批准号:
561794-2021 - 财政年份:2021
- 资助金额:
$ 3.62万 - 项目类别:
University Undergraduate Student Research Awards
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
- 批准号:
RGPIN-2017-06068 - 财政年份:2021
- 资助金额:
$ 3.62万 - 项目类别:
Discovery Grants Program - Individual
Minimal submanifolds in Riemannian geometry
黎曼几何中的最小子流形
- 批准号:
RGPIN-2020-04225 - 财政年份:2021
- 资助金额:
$ 3.62万 - 项目类别:
Discovery Grants Program - Individual