SCH: INT: Personalized Real-Time Learning of Optimal Diagnostic Tests using Multi-Modal Clinical Data

SCH:INT:使用多模式临床数据进行最佳诊断测试的个性化实时学习

基本信息

  • 批准号:
    1722516
  • 负责人:
  • 金额:
    $ 133.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This project harnesses the growing amount of data that is captured in the electronic health record to discover the optimal diagnostic pathway for an individual patient. A multidisciplinary team with expertise in decision modeling, radiology/clinical practice, informatics, and machine learning will investigate approaches that transform data into actionable knowledge, enabled by a new class of clinical decision support algorithms that actively learn from available clinical data. The objective of this project is to develop and evaluate a data-driven framework for decision support that helps clinicians to deliver individualized patient care by discovering optimal sequences of actions and to diagnose patients in a timely, accurate, and cost-effective manner. The project addresses challenges related to finding relevant information from large, longitudinal patient data; learning sequences of actions from past patient cases; and handling uncertainty that is inherent to the practice of medicine. The new algorithms will improve how observational clinical data can be used to generate evidence that improves healthcare delivery, efficiency, and ultimately, realizes precision medicine and improves patient outcomes. A diverse group of graduate students will be trained in an interdisciplinary manner to translate algorithms and data science concepts into applications that have real-world clinical utility, and with a clear understanding of the technical and cognitive challenges.The proposed research will create a generalizable framework for learning from healthcare data to discover optimal actions for individual patients with the following objectives: (1) to determine what combination of diagnostic procedures (e.g., imaging, labs, biopsy) should be used to achieve an accurate and timely diagnosis, and in what sequence; and (2) to demonstrate that learning such pathways can be done using available data, allowing the new methodology to be applied in a wide range of clinical domains. Novel aspects of this project are three-fold: (1)Dealing with an environment that is unknown and changing over time in unpredictable ways through a novel adaptive learning approach to discover the most informative features that are predictive of subsequent actions taken in real-time. This builds upon earlier work in relevance learning to dynamically elucidate the relationships between clinical features and possible actions. (2)Developing a new type of bandit algorithm that not only discovers the next best diagnostic test to order, but also identifies additional information that is needed to make a definitive diagnosis. The accuracy and value of diagnostic tests are dependent on many factors (e.g., technology, patient characteristics). The team will assess how prior information from similar patients can speed-up learning given these factors. (3)Providing confidence bounds about the risks and benefits of selecting a specific diagnostic exam to perform. These confidence bounds can be easily understood by clinicians. The performance and utility of this approach will be demonstrated using a prospective study that solicits physician feedback about specific recommendations for a given patient case and learns from situations in which the physician does not follow the system's recommendation.
该项目利用电子健康记录中捕获的越来越多的数据,为单个患者发现最佳诊断途径。一个在决策建模、放射学/临床实践、信息学和机器学习方面具有专业知识的多学科团队将研究将数据转化为可操作知识的方法,这些方法由一类新的临床决策支持算法实现,这些算法可以从现有的临床数据中主动学习。该项目的目标是开发和评估一个数据驱动的决策支持框架,帮助临床医生通过发现最佳的行动序列来提供个性化的患者护理,并以及时、准确和具有成本效益的方式诊断患者。该项目解决了从大量纵向患者数据中寻找相关信息的挑战;从过去的病例中学习行动顺序;以及处理医学实践中固有的不确定性。新算法将改进如何使用观察性临床数据来生成证据,从而改善医疗保健服务和效率,并最终实现精准医疗和改善患者预后。研究生将以跨学科的方式接受培训,将算法和数据科学概念转化为具有现实世界临床实用性的应用,并对技术和认知挑战有清晰的理解。拟议的研究将创建一个可推广的框架,用于从医疗保健数据中学习,以发现个体患者的最佳行动,其目标如下:(1)确定应使用何种诊断程序(例如,成像、实验室、活检)组合来实现准确及时的诊断,以及以何种顺序进行诊断;(2)证明可以使用现有数据来学习这些途径,从而使新方法能够广泛应用于临床领域。这个项目的新颖之处在于三个方面:(1)通过一种新颖的适应性学习方法来处理未知的环境,并以不可预测的方式随时间变化,以发现最具信息量的特征,这些特征可以预测实时采取的后续行动。这建立在早期相关学习工作的基础上,以动态地阐明临床特征和可能的行动之间的关系。(2)开发一种新型的强盗算法,不仅可以发现下一个最好的诊断测试,还可以识别出做出明确诊断所需的额外信息。诊断测试的准确性和价值取决于许多因素(例如,技术、患者特征)。考虑到这些因素,研究小组将评估来自类似患者的先验信息如何加速学习。(3)提供关于选择进行特定诊断检查的风险和收益的信心范围。这些置信区间可以很容易地被临床医生理解。这种方法的性能和效用将通过一项前瞻性研究来证明,该研究征求医生对特定患者病例的具体建议的反馈,并从医生不遵循系统建议的情况中学习。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
  • DOI:
    10.48550/arxiv.2206.08363
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Crabbe;Alicia Curth;Ioana Bica;M. Schaar
  • 通讯作者:
    Jonathan Crabbe;Alicia Curth;Ioana Bica;M. Schaar
Automated identification and assignment of colonoscopy surveillance recommendations for individuals with colorectal polyps
  • DOI:
    10.1016/j.gie.2021.05.036
  • 发表时间:
    2021-10-13
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Peterson, Emma;May, Folasade P.;Hsu, William
  • 通讯作者:
    Hsu, William
Multiple stakeholders drive diverse interpretability requirements for machine learning in healthcare
  • DOI:
    10.1038/s42256-023-00698-2
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    23.8
  • 作者:
    F. Imrie;Robert I. Davis;M. Van Der Schaar
  • 通讯作者:
    F. Imrie;Robert I. Davis;M. Van Der Schaar
D-CODE: Discovering Closed-form ODEs from Observed Trajectories
Factors Associated With Nonadherence to Lung Cancer Screening Across Multiple Screening Time Points.
  • DOI:
    10.1001/jamanetworkopen.2023.15250
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    13.8
  • 作者:
    Lin, Yannan;Liang, Li-Jung;Ding, Ruiwen;Prosper, Ashley Elizabeth;Aberle, Denise R.;Hsu, William
  • 通讯作者:
    Hsu, William
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Hsu其他文献

SPIRS: A Framework for Content-based Image Retrieval from Large Biomedical Databases
SPIRS:大型生物医学数据库中基于内容的图像检索框架
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Hsu;L. Long;Sameer Kiran Antani
  • 通讯作者:
    Sameer Kiran Antani
Context-Based Electronic Health Record: Towards Patient Specific Healthcare
基于上下文的电子健康记录:面向患者特定的医疗保健
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Hsu;Ricky K. Taira
  • 通讯作者:
    Ricky K. Taira
Risk-Stratified Screening: A Simulation Study of Scheduling Templates on Daily Mammography Recalls
风险分层筛查:日常乳腺 X 线检查召回调度模板的模拟研究
  • DOI:
    10.1016/j.jacr.2024.12.010
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    5.100
  • 作者:
    Yannan Lin;Anne C. Hoyt;Vladimir G. Manuel;Moira Inkelas;Mehmet Ulvi Saygi Ayvaci;Mehmet Eren Ahsen;William Hsu
  • 通讯作者:
    William Hsu
Tu1962 VISITATION WITH A GASTROENTEROLOGIST AND PATIENT REMINDERS PREDICT UPTAKE OF TIMELY SURVEILLANCE COLONOSCOPY FOR PATIENTS WITH HIGH RISK ADENOMA
  • DOI:
    10.1016/s0016-5085(20)33747-1
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anthony Myint;Edgar Corona;Liu Yang;Bao Sean Nguyen;Christina Lin;Marcela Zhou Huang;Paul Shao;Didi Mwengela;Michelle Didero;Ishan Asokan;Divya Devineni;Alex Bui;William Hsu;Cleo K. Maehara;Bita V. Naini;Yuna Kang;Roshan Bastani;Folasade (Fola) P. May
  • 通讯作者:
    Folasade (Fola) P. May
Effect of pulmonary vein isolation on atrial fibrillation cycle length
  • DOI:
    10.1016/s0735-1097(02)80386-2
  • 发表时间:
    2002-03-06
  • 期刊:
  • 影响因子:
  • 作者:
    Mehmet Ozaydin;William Hsu;Hiroshi Tada;Aman Chugh;Christoph Scharf;Radmira Greenstein;Frank Pelosi;Bradley P. Knight;S.Adam Strickbarger;Fred Morady;Hakan Oral
  • 通讯作者:
    Hakan Oral

William Hsu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Hsu', 18)}}的其他基金

Computer Music Laboratory
计算机音乐实验室
  • 批准号:
    9451623
  • 财政年份:
    1994
  • 资助金额:
    $ 133.24万
  • 项目类别:
    Standard Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SCH: INT: Personalized Wearable Metabolic Rate Monitors and Learning Social Networks-A Synergy for Smart Connected Health
SCH:INT:个性化可穿戴代谢率监测器和学习社交网络 - 智能互联健康的协同作用
  • 批准号:
    2014506
  • 财政年份:
    2020
  • 资助金额:
    $ 133.24万
  • 项目类别:
    Standard Grant
SCH: INT: Personalized Models of Nutrition Intake from Continuous Glucose Monitors
SCH:INT:连续血糖监测仪的营养摄入个性化模型
  • 批准号:
    2014475
  • 财政年份:
    2020
  • 资助金额:
    $ 133.24万
  • 项目类别:
    Standard Grant
SCH:INT: SCH: INT: A gamified mobile system for real-time mental health data modeling and personalized autism care across sociocultural settings
SCH:INT: SCH:INT:一个游戏化的移动系统,用于跨社会文化环境的实时心理健康数据建模和个性化自闭症护理
  • 批准号:
    2014232
  • 财政年份:
    2020
  • 资助金额:
    $ 133.24万
  • 项目类别:
    Standard Grant
NRI: INT: MiaPURE (Modular, Interactive and Adaptive Personalized Unique Rolling Experience)
NRI:INT:MiaPURE(模块化、交互式和自适应个性化独特滚动体验)
  • 批准号:
    2024905
  • 财政年份:
    2020
  • 资助金额:
    $ 133.24万
  • 项目类别:
    Standard Grant
NRI: INT: Wearable Robots for the Community: Personalized Assistance using Human-in-the-loop Optimization
NRI:INT:社区可穿戴机器人:使用人机交互优化的个性化协助
  • 批准号:
    1925085
  • 财政年份:
    2019
  • 资助金额:
    $ 133.24万
  • 项目类别:
    Standard Grant
SCH: INT: MyPHA: Automatically generating personalized accounts of in-patient hospitalization
SCH:INT:MyPHA:自动生成住院患者的个性化账户
  • 批准号:
    10226146
  • 财政年份:
    2018
  • 资助金额:
    $ 133.24万
  • 项目类别:
NRI: INT: COLLAB: Accelerating Large-Scale Adoption of Robotic Lower-Limb Prostheses through Personalized Prosthesis Controller Adaptation
NRI:INT:COLLAB:通过个性化假肢控制器适应加速机器人下肢假肢的大规模采用
  • 批准号:
    1734501
  • 财政年份:
    2017
  • 资助金额:
    $ 133.24万
  • 项目类别:
    Standard Grant
SCH: INT: Personalized Proactive Diabetes Self-Management and Social Networking for American Indians
SCH:INT:美国印第安人的个性化主动糖尿病自我管理和社交网络
  • 批准号:
    1722913
  • 财政年份:
    2017
  • 资助金额:
    $ 133.24万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Development, Deployment and Evaluation of Personalized Learning Companion Robots for Early Literacy and Language Learning
NRI:INT:COLLAB:用于早期识字和语言学习的个性化学习伴侣机器人的开发、部署和评估
  • 批准号:
    1734380
  • 财政年份:
    2017
  • 资助金额:
    $ 133.24万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Development, Deployment and Evaluation of Personalized Learning Companion Robots for Early Literacy and Language Learning
NRI:INT:COLLAB:用于早期识字和语言学习的个性化学习伴侣机器人的开发、部署和评估
  • 批准号:
    1734443
  • 财政年份:
    2017
  • 资助金额:
    $ 133.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了