S&AS: FND: Reflective Learning of Stochastic Physical Models for Robust Manipulation
S
基本信息
- 批准号:1723869
- 负责人:
- 金额:$ 68.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In order for robots to function in everyday life environments, from flexible manufacturing and warehouse domains to households, they need to autonomously grasp and manipulate a wide variety of potentially unknown objects. Currently, autonomous robots are practically unable to work outside highly-controlled environments wherein an accurate model of every object is provided. This limitation is partially due to the lack of robust algorithms for grasping and manipulating objects with unknown geometric or mechanical properties. The proposed project will perform fundamental research into robust robotic manipulation in a way that will enable autonomous robots to interact efficiently with a large variety of everyday physical objects for extended periods of time. The objective is for autonomous robotic manipulators to effectively learn from experience how objects may physically interact with each other and with the robotic arm. The next step is to utilize this experience so as to perform robust manipulation tasks. There are many exemplary robotic tasks that can be benefited from the proposed improvements and which will form the basis of the project's experimentation process. They include the pushing of objects to desired poses, reconfiguration of objects to simplify their picking and the handling of tools. The project develops three key components: (1) An algorithm for learning inertial, elastic, and friction properties of an unknown object by observing how the object moves when manipulated by a robot. The project will research novel Bayesian optimization techniques for black-box system identification in order to learn probabilistic models of objects. (2) A physically realistic simulator that can provide a stochastic model of an object's motion given the physical parameters learned by the first component. This will be achieved by utilizing online non-parametric learning methods for speeding up physically realistic simulations under uncertainty. (3), A robust planning algorithm that utilizes the simulator for finding optimal actions to apply on the object given the learned stochastic model. The objective is to converge to increasingly robust solutions as computation time increases and the robot acquires increased experience with objects in an environment. To strengthen the project's broader impact, the PIs will provide implementations of their solutions to the research community as open-source software packages. This will be coupled with the generation of educational material, which will aim to attract undergraduate students early in their studies to STEM. The PIs will also aim to organize academic meetings that will bring together researchers from foundational domains, robotics experts and industry representatives.
为了让机器人在日常生活环境中发挥作用,从灵活的制造和仓库领域到家庭,它们需要自主地抓取和操纵各种潜在的未知物体。目前,自主机器人实际上无法在高度受控的环境下工作,在这种环境中,每个对象都提供了准确的模型。这一限制部分是由于缺乏用于抓取和操纵具有未知几何或机械属性的对象的健壮算法。拟议的项目将对健壮的机器人操作进行基础研究,使自主机器人能够在更长的时间内与各种日常物理物体有效互动。其目标是让自主机器人操作员有效地从经验中学习物体如何相互作用以及如何与机械臂进行物理交互。下一步是利用这一经验来执行健壮的操作任务。有许多示范性的机器人任务可以从拟议的改进中受益,这些任务将构成该项目实验过程的基础。它们包括将对象推到所需的姿势,重新配置对象以简化其拾取和工具的操作。该项目开发了三个关键组件:(1)一种通过观察机器人操作时对象的运动方式来学习未知对象的惯性、弹性和摩擦属性的算法。该项目将研究新的贝叶斯优化技术用于黑匣子系统识别,以学习对象的概率模型。(2)物理上逼真的模拟器,它可以在给定第一个组件学习到的物理参数的情况下提供对象运动的随机模型。这将通过利用在线非参数学习方法来加速不确定情况下的物理真实模拟来实现。(3),一种稳健的规划算法,它利用模拟器在给定学习的随机模型的情况下找到应用于对象的最优动作。目标是随着计算时间的增加和机器人获得与环境中对象的更多体验而收敛到越来越健壮的解。为了加强该项目的更广泛影响,私人投资机构将以开放源码软件包的形式向研究界提供其解决方案的实施。此外,还将编写教材,旨在吸引刚开始学习的本科生进入STEM学习。PIS还将致力于组织学术会议,将来自基础领域的研究人员、机器人专家和行业代表聚集在一起。
项目成果
期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anytime motion planning for prehensile manipulation in dense clutter
随时进行运动规划,以便在密集的杂乱环境中进行抓握操作
- DOI:10.1080/01691864.2019.1690207
- 发表时间:2019
- 期刊:
- 影响因子:2
- 作者:Kimmel, Andrew;Shome, Rahul;Bekris, Kostas
- 通讯作者:Bekris, Kostas
Learning to Slide Unknown Objects with Differentiable Physics Simulations
学习通过可微分物理模拟滑动未知物体
- DOI:10.15607/rss.2020.xvi.099
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Song, Changkyu;Boularias, Abdeslam
- 通讯作者:Boularias, Abdeslam
Safe and Effective Picking Paths in Clutter given Discrete Distributions of Object Poses
给定物体姿态离散分布的杂波中安全有效的拾取路径
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Wang, R;Mitash, C;Boehm, D;Bekris, K E
- 通讯作者:Bekris, K E
Physics-based scene-level reasoning for object pose estimation in clutter
- DOI:10.1177/0278364919846551
- 发表时间:2022-05-01
- 期刊:
- 影响因子:9.2
- 作者:Mitash, Chaitanya;Boularias, Abdeslam;Bekris, Kostas
- 通讯作者:Bekris, Kostas
The interaction between map complexity and crowd movement on navigation decisions in virtual reality
虚拟现实中地图复杂性和人群运动对导航决策的相互作用
- DOI:10.1098/rsos.191523
- 发表时间:2020
- 期刊:
- 影响因子:3.5
- 作者:Zhao, Hantao;Thrash, Tyler;Grossrieder, Armin;Kapadia, Mubbasir;Moussaïd, Mehdi;Hölscher, Christoph;Schinazi, Victor R.
- 通讯作者:Schinazi, Victor R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abdeslam Boularias其他文献
Predictive representations for sequential decision making under uncertainty
- DOI:
- 发表时间:
2010-07 - 期刊:
- 影响因子:0
- 作者:
Abdeslam Boularias - 通讯作者:
Abdeslam Boularias
Balancing Safety and Exploitability in Opponent Modeling
在对手建模中平衡安全性和可利用性
- DOI:
10.1609/aaai.v25i1.7981 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Zhikun Wang;Abdeslam Boularias;Katharina Muelling;Jan Peters - 通讯作者:
Jan Peters
Provably Efficient Long-Horizon Exploration in Monte Carlo Tree Search through State Occupancy Regularization
通过状态占用正则化进行蒙特卡罗树搜索中可证明有效的长视野探索
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Liam Schramm;Abdeslam Boularias - 通讯作者:
Abdeslam Boularias
State Space Compression with Predictive Representations
具有预测表示的状态空间压缩
- DOI:
10.1109/iros47612.2022.9981624 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Abdeslam Boularias;Masoumeh T. Izadi;B. Chaib - 通讯作者:
B. Chaib
Information-theoretic Model Identification and Policy Search using Physics Engines with Application to Robotic Manipulation
使用物理引擎的信息论模型识别和策略搜索及其在机器人操作中的应用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shaojun Zhu;A. Kimmel;Abdeslam Boularias - 通讯作者:
Abdeslam Boularias
Abdeslam Boularias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abdeslam Boularias', 18)}}的其他基金
NRI: Robust and Efficient Physics-based Learning and Reasoning in Degraded Environments
NRI:退化环境中稳健且高效的基于物理的学习和推理
- 批准号:
2132972 - 财政年份:2022
- 资助金额:
$ 68.26万 - 项目类别:
Standard Grant
RI: CAREER: Task-Oriented Model Identification for Robust Robotic Manipulation
RI:职业:鲁棒机器人操作的面向任务的模型识别
- 批准号:
1846043 - 财政年份:2019
- 资助金额:
$ 68.26万 - 项目类别:
Standard Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
- 批准号:
MR/Y004000/1 - 财政年份:2024
- 资助金额:
$ 68.26万 - 项目类别:
Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 68.26万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
2311967 - 财政年份:2022
- 资助金额:
$ 68.26万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024882 - 财政年份:2021
- 资助金额:
$ 68.26万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024646 - 财政年份:2021
- 资助金额:
$ 68.26万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024792 - 财政年份:2021
- 资助金额:
$ 68.26万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024670 - 财政年份:2021
- 资助金额:
$ 68.26万 - 项目类别:
Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
- 批准号:
2024409 - 财政年份:2020
- 资助金额:
$ 68.26万 - 项目类别:
Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
- 批准号:
2024435 - 财政年份:2020
- 资助金额:
$ 68.26万 - 项目类别:
Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
- 批准号:
2024615 - 财政年份:2020
- 资助金额:
$ 68.26万 - 项目类别:
Standard Grant