S&AS: INT: Inference, Reasoning, and Learning for Robust Autonomous Driving
S
基本信息
- 批准号:1724282
- 负责人:
- 金额:$ 139.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While research in autonomous driving has made great strides in recent years, fully autonomous cars are still a distant goal, primarily because of a lack of robustness. Current autonomous cars cannot drive on new roads, or roads that have changed substantially (such as after an earthquake), or when there is a GPS or data outage such as in parking garages, urban cities and tunnels. Importantly, humans are good at all of this: Humans can drive without detailed maps or high precision GPS/IMU sensors, and typically require only a small amount of sparse information for guidance, and their performance typically gets better over time through learning. Using the "intelligent" human driver as a guide, the planned research will develop algorithms that can perceive and make predictions about a scene in real time with measurable confidence, particularly as the scene is closer to the car. New robustness characteristics will be achieved through the ability to detect and overcome mistakes, both in the near term (real time) and long term (learning). The planned algorithms will be designed and validated in a way to enable an inherent robustness not currently available in autonomous driving, and fast adoption by the community. This project is aligned with NSF's Intelligent Physical Systems (IPS) because the algorithms will require cognizant and reflective capabilities in a knowledge-rich environment. Additionally, outputs of this project will impact robotics, machine learning and cyber-physical systems. Educationally, data logs will be disseminated to enable open ended student projects in the community, and undergrad and high school students will collaborate with the research team to integrate sensors, perform experiments and data collection, and disseminate data logs to the community. Led by researchers in Mechanical and Aerospace Engineering, and Computer Science at Cornell University, the goal of this research is to develop, integrate and validate theory and algorithms to enable robust and persistent autonomous driving. This project is aligned with NSF's Intelligent Physical Systems (IPS) because the algorithms will require cognizant and reflective capabilities in a knowledge-rich environment. The technical approach will develop a robust perceptual pipeline for detection, scene estimation, prediction, and anomaly/mistake detection and learning; integrate the algorithms into Cornell's autonomous car software framework and validate the components and system in a series of experimental scenarios to enable their faster adoption by the community. Key component level algorithms to be developed include anytime deep learning detectors with quantifiable performance; multiple hypothesis reasoning with memory attributes; generalized probabilistic anticipation algorithms to mimic a human's mental model of a dynamic scene; and anomaly/mistake detection coupled with online learning. Outcomes will include open source algorithms and data logs; publications, conferences, workshops; data logs for open ended projects in courses and across the community; and undergrad and high school education and diversity programs in the interdisciplinary area of autonomous driving.
虽然近年来自动驾驶的研究取得了长足的进步,但完全自动驾驶的汽车仍然是一个遥远的目标,主要是因为缺乏鲁棒性。目前的自动驾驶汽车无法在新建道路上行驶,或者在发生重大变化的道路上行驶(例如地震后),或者在停车场、城市和隧道等GPS或数据中断时行驶。重要的是,人类在这方面都很擅长:人类可以在没有详细地图或高精度GPS/IMU传感器的情况下驾驶,通常只需要少量稀疏的信息进行指导,并且他们的表现通常会随着时间的推移而变得更好。以“智能”人类驾驶员为指导,计划中的研究将开发算法,可以以可测量的信心在真实的时间内感知和预测场景,特别是当场景更接近汽车时。新的鲁棒性特征将通过在短期(真实的时间)和长期(学习)中检测和克服错误的能力来实现。计划中的算法将被设计和验证,以实现目前自动驾驶中不具备的固有鲁棒性,并被社区快速采用。该项目与NSF的智能物理系统(IPS)保持一致,因为算法将需要在知识丰富的环境中具有认知和反射能力。此外,该项目的产出将影响机器人、机器学习和网络物理系统。在教育方面,数据日志将被传播,以使开放式的学生项目在社区中,本科生和高中生将与研究团队合作,整合传感器,进行实验和数据收集,并向社区传播数据日志。由康奈尔大学机械和航空航天工程以及计算机科学的研究人员领导,这项研究的目标是开发,集成和验证理论和算法,以实现强大和持久的自动驾驶。该项目与NSF的智能物理系统(IPS)保持一致,因为算法将需要在知识丰富的环境中具有认知和反射能力。该技术方法将开发一个强大的感知管道,用于检测,场景估计,预测和异常/错误检测和学习;将算法集成到康奈尔大学的自动驾驶汽车软件框架中,并在一系列实验场景中验证组件和系统,以使其更快地被社区采用。待开发的关键组件级算法包括具有可量化性能的随时深度学习检测器;具有记忆属性的多假设推理;模仿人类对动态场景的心理模型的广义概率预测算法;以及与在线学习相结合的异常/错误检测。成果将包括开源算法和数据日志;出版物,会议,研讨会;课程和整个社区开放式项目的数据日志;以及自动驾驶跨学科领域的本科和高中教育和多样性计划。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Priority Tracking of Pedestrians for Self-Driving Cars
自动驾驶汽车的行人优先追踪
- DOI:10.1109/case49997.2022.9926614
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Nino, Jose;Campbell, Mark
- 通讯作者:Campbell, Mark
Multi-Scale Dense Networks for Resource Efficient Image Classification
- DOI:
- 发表时间:2017-03
- 期刊:
- 影响因子:0
- 作者:Gao Huang;Danlu Chen;Tianhong Li;Felix Wu;L. Maaten;Kilian Q. Weinberger
- 通讯作者:Gao Huang;Danlu Chen;Tianhong Li;Felix Wu;L. Maaten;Kilian Q. Weinberger
Hindsight is 20/20: Leveraging Past Traversals to Aid 3D Perception
- DOI:10.48550/arxiv.2203.11405
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Yurong You;Katie Luo;Xiangyu Chen;Junan Chen;Wei-Lun Chao;Wen Sun;Bharath Hariharan;Mark E. Campbell;Kilian Q. Weinberger
- 通讯作者:Yurong You;Katie Luo;Xiangyu Chen;Junan Chen;Wei-Lun Chao;Wen Sun;Bharath Hariharan;Mark E. Campbell;Kilian Q. Weinberger
Unsupervised Domain Adaptation for Self-Driving from Past Traversal Features
根据过去的遍历特征进行自动驱动的无监督域适应
- DOI:10.1109/iccvw60793.2023.00436
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang, Travis;Luo, Katie;Phoo, Cheng Perng;You, Yurong;Chao, Wei-Lun;Hariharan, Bharath;Campbell, Mark;Weinberger, Kilian Q.
- 通讯作者:Weinberger, Kilian Q.
Probabilistic Uncertainty Quantification of Prediction Models with Application to Visual Localization
- DOI:10.1109/icra48891.2023.10160298
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Junan Chen;Josephine Monica;Wei-Lun Chao;Mark E. Campbell
- 通讯作者:Junan Chen;Josephine Monica;Wei-Lun Chao;Mark E. Campbell
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Campbell其他文献
Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science
- DOI:
10.1186/s13012-016-0428-0 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:13.400
- 作者:
Cara Lewis;Doyanne Darnell;Suzanne Kerns;Maria Monroe-DeVita;Sara J. Landes;Aaron R. Lyon;Cameo Stanick;Shannon Dorsey;Jill Locke;Brigid Marriott;Ajeng Puspitasari;Caitlin Dorsey;Karin Hendricks;Andria Pierson;Phil Fizur;Katherine A. Comtois;Lawrence A. Palinkas;Patricia Chamberlain;Gregory A. Aarons;Amy E. Green;Mark. G. Ehrhart;Elise M. Trott;Cathleen E. Willging;Maria E. Fernandez;Nicholas H. Woolf;Shuting Lily Liang;Natalia I. Heredia;Michelle Kegler;Betsy Risendal;Andrea Dwyer;Vicki Young;Dayna Campbell;Michelle Carvalho;Yvonne Kellar-Guenther;Laura J. Damschroder;Julie C. Lowery;Sarah S. Ono;Kathleen F. Carlson;Erika K. Cottrell;Maya E. O’Neil;Travis L. Lovejoy;Joanna J. Arch;Jill L. Mitchell;Cara C. Lewis;Brigid R. Marriott;Kelli Scott;Jennifer Schurer Coldiron;Eric J. Bruns;Alyssa N. Hook;Benjamin C. Graham;Katelin Jordan;Rochelle F. Hanson;Angela Moreland;Benjamin E. Saunders;Heidi S. Resnick;Shannon Wiltsey Stirman;Cassidy A. Gutner;Jennifer Gamarra;Dawne Vogt;Michael Suvak;Jennifer Schuster Wachen;Katherine Dondanville;Jeffrey S. Yarvis;Jim Mintz;Alan L. Peterson;Elisa V. Borah;Brett T. Litz;Alma Molino;Stacey Young McCaughan;Patricia A. Resick;Nancy Pandhi;Nora Jacobson;Neftali Serrano;Armando Hernandez;Elizabeth Zeidler- Schreiter;Natalie Wietfeldt;Zaher Karp;Michael D. Pullmann;Barbara Lucenko;Bridget Pavelle;Jacqueline A. Uomoto;Andrea Negrete;Molly Cevasco;Suzanne E. U. Kerns;Robert P. Franks;Christopher Bory;Edward J. Miech;Teresa M. Damush;Jason Satterfield;Derek Satre;Maria Wamsley;Patrick Yuan;Patricia O’Sullivan;Helen Best;Susan Velasquez;Miya Barnett;Lauren Brookman-Frazee;Jennifer Regan;Nicole Stadnick;Alison Hamilton;Anna Lau;Jennifer Regan;Alison Hamilton;Nicole Stadnick;Miya Barnett;Anna Lau;Lauren Brookman-Frazee;Nicole Stadnick;Anna Lau;Miya Barnett;Jennifer Regan;Scott Roesch;Lauren Brookman-Frazee;Byron J. Powell;Thomas J. Waltz;Matthew J. Chinman;Laura Damschroder;Jeffrey L. Smith;Monica M. Matthieu;Enola K. Proctor;JoAnn E. Kirchner;Thomas J. Waltz;Byron J. Powell;Matthew J. Chinman;Laura J. Damschroder;Jeffrey L. Smith;Monica J. Matthieu;Enola K. Proctor;JoAnn E. Kirchner;Monica M. Matthieu;Craig S. Rosen;Thomas J. Waltz;Byron J. Powell;Matthew J. Chinman;Laura J. Damschroder;Jeffrey L. Smith;Enola K. Proctor;JoAnn E. Kirchner;Sarah C. Walker;Asia S. Bishop;Mariko Lockhart;Allison L. Rodriguez;Luisa Manfredi;Andrea Nevedal;Joel Rosenthal;Daniel M. Blonigen;Anne M. Mauricio;Thomas D. Dishion;Jenna Rudo-Stern;Justin D. Smith;Jill Locke;Courtney Benjamin Wolk;Colleen Harker;Anne Olsen;Travis Shingledecker;Frances Barg;David Mandell;Rinad S. Beidas;Marissa C. Hansen;Maria P. Aranda;Isabel Torres-Vigil;Bryan Hartzler;Bradley Steinfeld;Tory Gildred;Zandrea Harlin;Fredric Shephard;Matthew S. Ditty;Andrea Doyle;John A. Bickel;Katharine Cristaudo;Dan Fox;Sonia Combs;David H. Lischner;Richard A. Van Dorn;Stephen J. Tueller;Jesse M. Hinde;Georgia T. Karuntzos;Maria Monroe-DeVita;Roselyn Peterson;Doyanne Darnell;Lucy Berliner;Shannon Dorsey;Laura K. Murray;Yevgeny Botanov;Beverly Kikuta;Tianying Chen;Marivi Navarro-Haro;Anthony DuBose;Kathryn E. Korslund;Marsha M. Linehan;Colleen M. Harker;Elizabeth A. Karp;Sarah R. Edmunds;Lisa V. Ibañez;Wendy L. Stone;Jack H. Andrews;Benjamin D. Johnides;Estee M. Hausman;Kristin M. Hawley;Beth Prusaczyk;Alex Ramsey;Ana Baumann;Graham Colditz;Enola K. Proctor;Yevgeny Botanov;Beverly Kikuta;Tianying Chen;Marivi Navarro-Haro;Anthony DuBose;Kathryn E. Korslund;Marsha M. Linehan;Colleen M. Harker;Elizabeth A. Karp;Sarah R. Edmunds;Lisa V. Ibañez;Wendy L. Stone;Mimi Choy-Brown;Jack H. Andrews;Benjamin D. Johnides;Estee M. Hausman;Kristin M. Hawley;Beth Prusaczyk;Alex Ramsey;Ana Baumann;Graham Colditz;Enola K. Proctor;Rosemary D. Meza;Shannon Dorsey;Shannon Wiltsey-Stirman;Georganna Sedlar;Leah Lucid;Caitlin Dorsey;Brigid Marriott;Nelson Zounlome;Cara Lewis;Cassidy A. Gutner;Candice M. Monson;Norman Shields;Marta Mastlej;Meredith SH Landy;Jeanine Lane;Shannon Wiltsey Stirman;Natalie K. Finn;Elisa M. Torres;Mark. G. Ehrhart;Gregory A. Aarons;Carol A. Malte;Aline Lott;Andrew J. Saxon;Meredith Boyd;Kelli Scott;Cara C. Lewis;Jennifer D. Pierce;Agathe Lorthios-Guilledroit;Lucie Richard;Johanne Filiatrault;Kevin Hallgren;Shirley Crotwell;Rosa Muñoz;Becky Gius;Benjamin Ladd;Barbara McCrady;Elizabeth Epstein;John D. Clapp;Danielle E. Ruderman;Melanie Barwick;Raluca Barac;Stanley Zlotkin;Laila Salim;Marnie Davidson;Alicia C. Bunger;Byron J. Powell;Hillary A. Robertson;Christopher Botsko;Sara J. Landes;Brandy N. Smith;Allison L. Rodriguez;Lindsay R. Trent;Monica M. Matthieu;Byron J. Powell;Enola K. Proctor;Melanie S. Harned;Marivi Navarro-Haro;Kathryn E. Korslund;Tianying Chen;Anthony DuBose;André Ivanoff;Marsha M. Linehan;Antonio R. Garcia;Minseop Kim;Lawrence A. Palinkas;Lonnie Snowden;John Landsverk;Annika C. Sweetland;Maria Jose Fernandes;Edilson Santos;Cristiane Duarte;Afrânio Kritski;Noa Krawczyk;Caitlin Nelligan;Milton L. Wainberg;Gregory A. Aarons;David H. Sommerfeld;Benjamin Chi;Echezona Ezeanolue;Rachel Sturke;Lydia Kline;Laura Guay;George Siberry;Ian M. Bennett;Rinad Beidas;Rachel Gold;Johnny Mao;Diane Powers;Mindy Vredevoogd;Jurgen Unutzer;Jennifer Schroeder;Lane Volpe;Julie Steffen;Shannon Dorsey;Michael D Pullmann;Suzanne E. U. Kerns;Nathaniel Jungbluth;Lucy Berliner;Kelly Thompson;Eliza Segell;Pearl McGee-Vincent;Nancy Liu;Robyn Walser;Jennifer Runnals;R. Keith Shaw;Sara J. Landes;Craig Rosen;Janet Schmidt;Patrick Calhoun;Ruth L. Varkovitzky;Sara J. Landes;Amy Drahota;Jonathan I. Martinez;Brigitte Brikho;Rosemary Meza;Aubyn C. Stahmer;Gregory A. Aarons;Anna Williamson;Ronnie M. Rubin;Byron J. Powell;Matthew O. Hurford;Shawna L. Weaver;Rinad S. Beidas;David S. Mandell;Arthur C. Evans;Byron J. Powell;Rinad S. Beidas;Ronnie M. Rubin;Rebecca E. Stewart;Courtney Benjamin Wolk;Samantha L. Matlin;Shawna Weaver;Matthew O. Hurford;Arthur C. Evans;Trevor R. Hadley;David S. Mandell;Donald R. Gerke;Beth Prusaczyk;Ana Baumann;Ericka M. Lewis;Enola K. Proctor;Jenna McWilliam;Jacquie Brown;Michelle Tucker;Kathleen P Conte;Aaron R. Lyon;Meredith Boyd;Abigail Melvin;Cara C. Lewis;Freda Liu;Nathaniel Jungbluth;Amelia Kotte;Kaitlin A. Hill;Albert C. Mah;Priya A. Korathu-Larson;Janelle R. Au;Sonia Izmirian;Scott Keir;Brad J. Nakamura;Charmaine K. Higa-McMillan;Brittany Rhoades Cooper;Angie Funaiole;Eleanor Dizon;Eric J. Hawkins;Carol A. Malte;Hildi J. Hagedorn;Douglas Berger;Anissa Frank;Aline Lott;Carol E. Achtmeyer;Anthony J. Mariano;Andrew J. Saxon;Kate Wolitzky-Taylor;Richard Rawson;Richard Ries;Peter Roy-Byrne;Michelle Craske;Dena Simmons;Catalina Torrente;Lori Nathanson;Grace Carroll;Justin D. Smith;Kimbree Brown;Karina Ramos;Nicole Thornton;Thomas J. Dishion;Elizabeth A. Stormshak;Daniel S. Shaw;Melvin N. Wilson;Mimi Choy-Brown;Emmy Tiderington;Bikki Tran Smith;Deborah K. Padgett;Ronnie M. Rubin;Marilyn L. Ray;Abraham Wandersman;Andrea Lamont;Gordon Hannah;Kassandra A. Alia;Matthew O. Hurford;Arthur C. Evans;Lisa Saldana;Holle Schaper;Mark Campbell;Patricia Chamberlain;Valerie B. Shapiro;B.K. Elizabeth Kim;Jennifer L. Fleming;Paul A. LeBuffe;Sara J. Landes;Cara C. Lewis;Allison L. Rodriguez;Brigid R. Marriott;Katherine Anne Comtois;Cara C. Lewis;Cameo Stanick;Bryan J. Weiner;Heather Halko;Caitlin Dorsey - 通讯作者:
Caitlin Dorsey
Seasonal Abundance and Activity of a Rattlesnake (Sistrurus miliarius barbouri) in Central Florida
佛罗里达州中部响尾蛇 (Sistrurus miliarius barbouri) 的季节性丰度和活动
- DOI:
10.2307/1446855 - 发表时间:
1996 - 期刊:
- 影响因子:2.6
- 作者:
P. G. May;T. Farrell;Steven T. Heulett;Melissa A. Pilgrim;L. A. Bishop;D. Spence;Ali M. Rabatsky;Mark Campbell;Alexander D. Aycrigg;W. Richardson - 通讯作者:
W. Richardson
MP69-09 SURVIVAL OUTCOMES OF ORGAN SPARING SURGERY, PARTIAL PENECTOMY AND TOTAL PENECTOMY IN T1/T2 PENILE CANCER
- DOI:
10.1016/j.juro.2017.02.2305 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Benjamin Schurhamer;Jun Tao;Mark Campbell;Judy Farias;Alfred Hall;Rodney Davis;Joseph Su;Mohamed Kamel - 通讯作者:
Mohamed Kamel
Health technology assessment – an important opportunity to inform the use of medical devices in the paediatric population: an analysis of NICE Medical Technology Guidance
- DOI:
10.1007/s40258-023-00805-9 - 发表时间:
2023-05-06 - 期刊:
- 影响因子:3.300
- 作者:
Sarah Greasley;Mark Campbell;James Wall - 通讯作者:
James Wall
Mark Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Campbell', 18)}}的其他基金
Uncertainty Modeling of Learning to Enable Probabilistic Perception
学习的不确定性建模以实现概率感知
- 批准号:
2305532 - 财政年份:2023
- 资助金额:
$ 139.86万 - 项目类别:
Standard Grant
CPS: Medium: Safety Assured, Performance Driven Autonomous Vehicles
CPS:中:安全有保证、性能驱动的自动驾驶汽车
- 批准号:
2211599 - 财政年份:2022
- 资助金额:
$ 139.86万 - 项目类别:
Standard Grant
NRI: FND: Probabilistic Hypothesis-Driven Adaptive Human-Robot Teams
NRI:FND:概率假设驱动的自适应人机团队
- 批准号:
1830497 - 财政年份:2018
- 资助金额:
$ 139.86万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Modeling and Verification of Language-based Interaction
NRI:协作研究:基于语言的交互的建模和验证
- 批准号:
1427030 - 财政年份:2014
- 资助金额:
$ 139.86万 - 项目类别:
Standard Grant
RI: Small: Qualitative Relational Navigation using Minimal Sensing
RI:小:使用最小感知的定性关系导航
- 批准号:
1320490 - 财政年份:2013
- 资助金额:
$ 139.86万 - 项目类别:
Standard Grant
CPS:Medium: Tightly Integrated Perception and Planning in Intelligent Robotics
CPS:中:智能机器人中紧密集成的感知和规划
- 批准号:
0931686 - 财政年份:2009
- 资助金额:
$ 139.86万 - 项目类别:
Standard Grant
EHS: Hybrid Estimation and Control with Bounded Probabilities
EHS:有界概率的混合估计和控制
- 批准号:
0410909 - 财政年份:2004
- 资助金额:
$ 139.86万 - 项目类别:
Standard Grant
相似国自然基金
内源性逆转录病毒MER65-int调控人类胎
盘发育与子宫内膜重塑的功能研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
- 批准号:LQ22H160033
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
INT-ACT: Intangible Cultural Heritage, Bridging The Past, Present And Future
INT-ACT:非物质文化遗产,连接过去、现在和未来
- 批准号:
10102226 - 财政年份:2024
- 资助金额:
$ 139.86万 - 项目类别:
EU-Funded
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
- 批准号:
2347604 - 财政年份:2023
- 资助金额:
$ 139.86万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2343183 - 财政年份:2023
- 资助金额:
$ 139.86万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2313481 - 财政年份:2022
- 资助金额:
$ 139.86万 - 项目类别:
Standard Grant
Quantifying the inboard transfer of deformation int he Northern Canadian Cordillera
量化加拿大北部科迪勒拉山脉向内变形传递
- 批准号:
517959-2018 - 财政年份:2022
- 资助金额:
$ 139.86万 - 项目类别:
Discovery Grants Program - Northern Research Supplement
SCH: INT: Context-Aware Micro-Interventions for Social Anxiety
SCH:INT:针对社交焦虑的情境感知微干预
- 批准号:
10700105 - 财政年份:2022
- 资助金额:
$ 139.86万 - 项目类别:
SCH: INT: Context-Aware Micro-Interventions for Social Anxiety
SCH:INT:针对社交焦虑的情境感知微干预
- 批准号:
10601189 - 财政年份:2022
- 资助金额:
$ 139.86万 - 项目类别:
Quantifying the inboard transfer of deformation int he Northern Canadian Cordillera
量化加拿大北部科迪勒拉山脉向内变形传递
- 批准号:
517959-2018 - 财政年份:2021
- 资助金额:
$ 139.86万 - 项目类别:
Discovery Grants Program - Northern Research Supplement
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10573225 - 财政年份:2021
- 资助金额:
$ 139.86万 - 项目类别:
NRI: INT: Self-Assembly of Modular Robots Constructed using DNA: Modeling and Manufacturing Nanostructures with Graph Neural Networks and DNA Origami
NRI:INT:使用 DNA 构建的模块化机器人的自组装:使用图神经网络和 DNA 折纸建模和制造纳米结构
- 批准号:
2132886 - 财政年份:2021
- 资助金额:
$ 139.86万 - 项目类别:
Standard Grant