Uncertainty Modeling of Learning to Enable Probabilistic Perception

学习的不确定性建模以实现概率感知

基本信息

  • 批准号:
    2305532
  • 负责人:
  • 金额:
    $ 59.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Modern prediction models (e.g., neural networks) have revolutionized applications ranging from business analysis to robotics. Much of the development has focused on increasing average prediction accuracy via extensive data collections and architectures. However, a key weakness of many of these models is that they simply provide an output, with no sense of the confidence or the accuracy of the result. Prediction accuracy of these models can vary based on the amount and diversity of the training data, the model architecture, and the test environment. For example, visual localization models degrades in poor weather, and object detectors do more poorly in environment in which objects can be obscured. Yet in either example, there is typically no measure of accuracy for the predictions. However, other types of prediction models do include measures of the accuracy in their outputs. A success approach has been shown in the probabilistic perception algorithms, which have been handling uncertain outputs, including outliers, for many years. GPS navigation systems must function in the presence of multi-path errors from buildings, and radar tracking sensors must function even with the return of many false positives due to clutter. Successful perception algorithms using these sensors have been developed because there exists uncertainty models capturing most errors. This project will develop new predictions models that merge deep learning outputs with probabilistic perception/reasoning algorithms to improve the ability of robots to navigate in uncertain environments. This research will develop formal uncertainty models of deep learning outputs in combination with probabilistic perception/reasoning algorithms to create holistic, high-integrity frameworks for key robotics functions such as localization, tracking and forecasting. This project leverages the best of both deep learning (processing large amounts of data quickly and accurately) and perception (reasoning over errors and mistakes). By considering three different classes of learning and perception problems (localization, tracking, forecasting), the work will more easily transition to other application domains such as robots in the home, warehouse, busy hotels/museums/train stations, and warehouses; and aerial and underwater vehicles. The project will make datasets and software available to the community, and research results will be disseminated through publications, conferences, courses, industry-targeted workshops and PI meetings. A comprehensive plan for broadening participation will be implemented including hosting under-represented students, working with high school and under-represented students, and training and mentoring undergraduate and graduate students.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代预测模型(例如,神经网络)已经彻底改变了从商业分析到机器人技术的应用。大部分的发展都集中在通过广泛的数据收集和架构来提高平均预测精度上。然而,许多这些模型的一个关键弱点是,它们只是提供一个输出,没有信心或结果的准确性。这些模型的预测精度可以根据训练数据的数量和多样性、模型体系结构和测试环境而变化。例如,视觉定位模型在恶劣天气下会退化,而物体探测器在物体可能被遮挡的环境中表现更差。然而,在这两种情况下,通常都无法衡量预测的准确性。然而,其他类型的预测模型确实在其输出中包含对准确性的度量。一种成功的方法已经在概率感知算法中显示出来,该算法已经处理不确定的输出,包括异常值,很多年了。GPS导航系统必须在来自建筑物的多路径误差存在的情况下工作,雷达跟踪传感器必须在杂波导致的许多误报返回的情况下工作。由于存在捕获大多数误差的不确定性模型,使用这些传感器的感知算法已经开发成功。该项目将开发新的预测模型,将深度学习输出与概率感知/推理算法相结合,以提高机器人在不确定环境中导航的能力。这项研究将开发深度学习输出的正式不确定性模型,结合概率感知/推理算法,为关键的机器人功能(如定位、跟踪和预测)创建整体的、高完整性的框架。该项目充分利用了深度学习(快速准确地处理大量数据)和感知(对错误和错误进行推理)的优势。通过考虑三种不同类别的学习和感知问题(定位、跟踪、预测),这项工作将更容易过渡到其他应用领域,如家庭、仓库、繁忙的酒店/博物馆/火车站和仓库中的机器人;以及空中和水下交通工具。该项目将向社区提供数据集和软件,研究结果将通过出版物、会议、课程、针对行业的讲习班和项目负责人会议传播。将实施扩大参与的综合计划,包括接待代表性不足的学生,与高中生和代表性不足的学生合作,以及对本科生和研究生进行培训和指导。该项目由跨部门机器人基础研究项目支持,由工程(ENG)和计算机与信息科学与工程(CISE)联合管理和资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Campbell其他文献

Networks: An Online Journal
网络:在线期刊
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Campbell
  • 通讯作者:
    Mark Campbell
Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science
  • DOI:
    10.1186/s13012-016-0428-0
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
    13.400
  • 作者:
    Cara Lewis;Doyanne Darnell;Suzanne Kerns;Maria Monroe-DeVita;Sara J. Landes;Aaron R. Lyon;Cameo Stanick;Shannon Dorsey;Jill Locke;Brigid Marriott;Ajeng Puspitasari;Caitlin Dorsey;Karin Hendricks;Andria Pierson;Phil Fizur;Katherine A. Comtois;Lawrence A. Palinkas;Patricia Chamberlain;Gregory A. Aarons;Amy E. Green;Mark. G. Ehrhart;Elise M. Trott;Cathleen E. Willging;Maria E. Fernandez;Nicholas H. Woolf;Shuting Lily Liang;Natalia I. Heredia;Michelle Kegler;Betsy Risendal;Andrea Dwyer;Vicki Young;Dayna Campbell;Michelle Carvalho;Yvonne Kellar-Guenther;Laura J. Damschroder;Julie C. Lowery;Sarah S. Ono;Kathleen F. Carlson;Erika K. Cottrell;Maya E. O’Neil;Travis L. Lovejoy;Joanna J. Arch;Jill L. Mitchell;Cara C. Lewis;Brigid R. Marriott;Kelli Scott;Jennifer Schurer Coldiron;Eric J. Bruns;Alyssa N. Hook;Benjamin C. Graham;Katelin Jordan;Rochelle F. Hanson;Angela Moreland;Benjamin E. Saunders;Heidi S. Resnick;Shannon Wiltsey Stirman;Cassidy A. Gutner;Jennifer Gamarra;Dawne Vogt;Michael Suvak;Jennifer Schuster Wachen;Katherine Dondanville;Jeffrey S. Yarvis;Jim Mintz;Alan L. Peterson;Elisa V. Borah;Brett T. Litz;Alma Molino;Stacey Young McCaughan;Patricia A. Resick;Nancy Pandhi;Nora Jacobson;Neftali Serrano;Armando Hernandez;Elizabeth Zeidler- Schreiter;Natalie Wietfeldt;Zaher Karp;Michael D. Pullmann;Barbara Lucenko;Bridget Pavelle;Jacqueline A. Uomoto;Andrea Negrete;Molly Cevasco;Suzanne E. U. Kerns;Robert P. Franks;Christopher Bory;Edward J. Miech;Teresa M. Damush;Jason Satterfield;Derek Satre;Maria Wamsley;Patrick Yuan;Patricia O’Sullivan;Helen Best;Susan Velasquez;Miya Barnett;Lauren Brookman-Frazee;Jennifer Regan;Nicole Stadnick;Alison Hamilton;Anna Lau;Jennifer Regan;Alison Hamilton;Nicole Stadnick;Miya Barnett;Anna Lau;Lauren Brookman-Frazee;Nicole Stadnick;Anna Lau;Miya Barnett;Jennifer Regan;Scott Roesch;Lauren Brookman-Frazee;Byron J. Powell;Thomas J. Waltz;Matthew J. Chinman;Laura Damschroder;Jeffrey L. Smith;Monica M. Matthieu;Enola K. Proctor;JoAnn E. Kirchner;Thomas J. Waltz;Byron J. Powell;Matthew J. Chinman;Laura J. Damschroder;Jeffrey L. Smith;Monica J. Matthieu;Enola K. Proctor;JoAnn E. Kirchner;Monica M. Matthieu;Craig S. Rosen;Thomas J. Waltz;Byron J. Powell;Matthew J. Chinman;Laura J. Damschroder;Jeffrey L. Smith;Enola K. Proctor;JoAnn E. Kirchner;Sarah C. Walker;Asia S. Bishop;Mariko Lockhart;Allison L. Rodriguez;Luisa Manfredi;Andrea Nevedal;Joel Rosenthal;Daniel M. Blonigen;Anne M. Mauricio;Thomas D. Dishion;Jenna Rudo-Stern;Justin D. Smith;Jill Locke;Courtney Benjamin Wolk;Colleen Harker;Anne Olsen;Travis Shingledecker;Frances Barg;David Mandell;Rinad S. Beidas;Marissa C. Hansen;Maria P. Aranda;Isabel Torres-Vigil;Bryan Hartzler;Bradley Steinfeld;Tory Gildred;Zandrea Harlin;Fredric Shephard;Matthew S. Ditty;Andrea Doyle;John A. Bickel;Katharine Cristaudo;Dan Fox;Sonia Combs;David H. Lischner;Richard A. Van Dorn;Stephen J. Tueller;Jesse M. Hinde;Georgia T. Karuntzos;Maria Monroe-DeVita;Roselyn Peterson;Doyanne Darnell;Lucy Berliner;Shannon Dorsey;Laura K. Murray;Yevgeny Botanov;Beverly Kikuta;Tianying Chen;Marivi Navarro-Haro;Anthony DuBose;Kathryn E. Korslund;Marsha M. Linehan;Colleen M. Harker;Elizabeth A. Karp;Sarah R. Edmunds;Lisa V. Ibañez;Wendy L. Stone;Jack H. Andrews;Benjamin D. Johnides;Estee M. Hausman;Kristin M. Hawley;Beth Prusaczyk;Alex Ramsey;Ana Baumann;Graham Colditz;Enola K. Proctor;Yevgeny Botanov;Beverly Kikuta;Tianying Chen;Marivi Navarro-Haro;Anthony DuBose;Kathryn E. Korslund;Marsha M. Linehan;Colleen M. Harker;Elizabeth A. Karp;Sarah R. Edmunds;Lisa V. Ibañez;Wendy L. Stone;Mimi Choy-Brown;Jack H. Andrews;Benjamin D. Johnides;Estee M. Hausman;Kristin M. Hawley;Beth Prusaczyk;Alex Ramsey;Ana Baumann;Graham Colditz;Enola K. Proctor;Rosemary D. Meza;Shannon Dorsey;Shannon Wiltsey-Stirman;Georganna Sedlar;Leah Lucid;Caitlin Dorsey;Brigid Marriott;Nelson Zounlome;Cara Lewis;Cassidy A. Gutner;Candice M. Monson;Norman Shields;Marta Mastlej;Meredith SH Landy;Jeanine Lane;Shannon Wiltsey Stirman;Natalie K. Finn;Elisa M. Torres;Mark. G. Ehrhart;Gregory A. Aarons;Carol A. Malte;Aline Lott;Andrew J. Saxon;Meredith Boyd;Kelli Scott;Cara C. Lewis;Jennifer D. Pierce;Agathe Lorthios-Guilledroit;Lucie Richard;Johanne Filiatrault;Kevin Hallgren;Shirley Crotwell;Rosa Muñoz;Becky Gius;Benjamin Ladd;Barbara McCrady;Elizabeth Epstein;John D. Clapp;Danielle E. Ruderman;Melanie Barwick;Raluca Barac;Stanley Zlotkin;Laila Salim;Marnie Davidson;Alicia C. Bunger;Byron J. Powell;Hillary A. Robertson;Christopher Botsko;Sara J. Landes;Brandy N. Smith;Allison L. Rodriguez;Lindsay R. Trent;Monica M. Matthieu;Byron J. Powell;Enola K. Proctor;Melanie S. Harned;Marivi Navarro-Haro;Kathryn E. Korslund;Tianying Chen;Anthony DuBose;André Ivanoff;Marsha M. Linehan;Antonio R. Garcia;Minseop Kim;Lawrence A. Palinkas;Lonnie Snowden;John Landsverk;Annika C. Sweetland;Maria Jose Fernandes;Edilson Santos;Cristiane Duarte;Afrânio Kritski;Noa Krawczyk;Caitlin Nelligan;Milton L. Wainberg;Gregory A. Aarons;David H. Sommerfeld;Benjamin Chi;Echezona Ezeanolue;Rachel Sturke;Lydia Kline;Laura Guay;George Siberry;Ian M. Bennett;Rinad Beidas;Rachel Gold;Johnny Mao;Diane Powers;Mindy Vredevoogd;Jurgen Unutzer;Jennifer Schroeder;Lane Volpe;Julie Steffen;Shannon Dorsey;Michael D Pullmann;Suzanne E. U. Kerns;Nathaniel Jungbluth;Lucy Berliner;Kelly Thompson;Eliza Segell;Pearl McGee-Vincent;Nancy Liu;Robyn Walser;Jennifer Runnals;R. Keith Shaw;Sara J. Landes;Craig Rosen;Janet Schmidt;Patrick Calhoun;Ruth L. Varkovitzky;Sara J. Landes;Amy Drahota;Jonathan I. Martinez;Brigitte Brikho;Rosemary Meza;Aubyn C. Stahmer;Gregory A. Aarons;Anna Williamson;Ronnie M. Rubin;Byron J. Powell;Matthew O. Hurford;Shawna L. Weaver;Rinad S. Beidas;David S. Mandell;Arthur C. Evans;Byron J. Powell;Rinad S. Beidas;Ronnie M. Rubin;Rebecca E. Stewart;Courtney Benjamin Wolk;Samantha L. Matlin;Shawna Weaver;Matthew O. Hurford;Arthur C. Evans;Trevor R. Hadley;David S. Mandell;Donald R. Gerke;Beth Prusaczyk;Ana Baumann;Ericka M. Lewis;Enola K. Proctor;Jenna McWilliam;Jacquie Brown;Michelle Tucker;Kathleen P Conte;Aaron R. Lyon;Meredith Boyd;Abigail Melvin;Cara C. Lewis;Freda Liu;Nathaniel Jungbluth;Amelia Kotte;Kaitlin A. Hill;Albert C. Mah;Priya A. Korathu-Larson;Janelle R. Au;Sonia Izmirian;Scott Keir;Brad J. Nakamura;Charmaine K. Higa-McMillan;Brittany Rhoades Cooper;Angie Funaiole;Eleanor Dizon;Eric J. Hawkins;Carol A. Malte;Hildi J. Hagedorn;Douglas Berger;Anissa Frank;Aline Lott;Carol E. Achtmeyer;Anthony J. Mariano;Andrew J. Saxon;Kate Wolitzky-Taylor;Richard Rawson;Richard Ries;Peter Roy-Byrne;Michelle Craske;Dena Simmons;Catalina Torrente;Lori Nathanson;Grace Carroll;Justin D. Smith;Kimbree Brown;Karina Ramos;Nicole Thornton;Thomas J. Dishion;Elizabeth A. Stormshak;Daniel S. Shaw;Melvin N. Wilson;Mimi Choy-Brown;Emmy Tiderington;Bikki Tran Smith;Deborah K. Padgett;Ronnie M. Rubin;Marilyn L. Ray;Abraham Wandersman;Andrea Lamont;Gordon Hannah;Kassandra A. Alia;Matthew O. Hurford;Arthur C. Evans;Lisa Saldana;Holle Schaper;Mark Campbell;Patricia Chamberlain;Valerie B. Shapiro;B.K. Elizabeth Kim;Jennifer L. Fleming;Paul A. LeBuffe;Sara J. Landes;Cara C. Lewis;Allison L. Rodriguez;Brigid R. Marriott;Katherine Anne Comtois;Cara C. Lewis;Cameo Stanick;Bryan J. Weiner;Heather Halko;Caitlin Dorsey
  • 通讯作者:
    Caitlin Dorsey
Seasonal Abundance and Activity of a Rattlesnake (Sistrurus miliarius barbouri) in Central Florida
佛罗里达州中部响尾蛇 (Sistrurus miliarius barbouri) 的季节性丰度和活动
  • DOI:
    10.2307/1446855
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    P. G. May;T. Farrell;Steven T. Heulett;Melissa A. Pilgrim;L. A. Bishop;D. Spence;Ali M. Rabatsky;Mark Campbell;Alexander D. Aycrigg;W. Richardson
  • 通讯作者:
    W. Richardson
MP69-09 SURVIVAL OUTCOMES OF ORGAN SPARING SURGERY, PARTIAL PENECTOMY AND TOTAL PENECTOMY IN T1/T2 PENILE CANCER
  • DOI:
    10.1016/j.juro.2017.02.2305
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin Schurhamer;Jun Tao;Mark Campbell;Judy Farias;Alfred Hall;Rodney Davis;Joseph Su;Mohamed Kamel
  • 通讯作者:
    Mohamed Kamel
Health technology assessment – an important opportunity to inform the use of medical devices in the paediatric population: an analysis of NICE Medical Technology Guidance

Mark Campbell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Campbell', 18)}}的其他基金

CPS: Medium: Safety Assured, Performance Driven Autonomous Vehicles
CPS:中:安全有保证、性能驱动的自动驾驶汽车
  • 批准号:
    2211599
  • 财政年份:
    2022
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
NRI: FND: Probabilistic Hypothesis-Driven Adaptive Human-Robot Teams
NRI:FND:概率假设驱动的自适应人机团队
  • 批准号:
    1830497
  • 财政年份:
    2018
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
S&AS: INT: Inference, Reasoning, and Learning for Robust Autonomous Driving
S
  • 批准号:
    1724282
  • 财政年份:
    2017
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Modeling and Verification of Language-based Interaction
NRI:协作研究:基于语言的交互的建模和验证
  • 批准号:
    1427030
  • 财政年份:
    2014
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
RI: Small: Qualitative Relational Navigation using Minimal Sensing
RI:小:使用最小感知的定性关系导航
  • 批准号:
    1320490
  • 财政年份:
    2013
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
CPS:Medium: Tightly Integrated Perception and Planning in Intelligent Robotics
CPS:中:智能机器人中紧密集成的感知和规划
  • 批准号:
    0931686
  • 财政年份:
    2009
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
EHS: Hybrid Estimation and Control with Bounded Probabilities
EHS:有界概率的混合估计和控制
  • 批准号:
    0410909
  • 财政年份:
    2004
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
  • 批准号:
    495410
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
Study on Modeling Collaborative Online International Learning (COIL) Program at Multinational Nursing Universities
跨国护理大学在线国际协作学习(COIL)项目建模研究
  • 批准号:
    23K09891
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Early-career Participant Support for Additive Manufacturing Modeling, Simulation, and Machine Learning Symposium at MS&T 2023; Columbus, Ohio; October 1- 4, 2023
MS 增材制造建模、仿真和机器学习研讨会的早期职业参与者支持
  • 批准号:
    2334074
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: An Integrated Multiphysics Machine Learning Modeling and Experimental Framework for Optimizing Micro-Needle Patches
RII Track-4:NSF:用于优化微针贴片的集成多物理场机器学习建模和实验框架
  • 批准号:
    2229555
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223987
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
Adversarial Learning Methods for Modeling and Inverse Design of Soft Materials
软材料建模和逆向设计的对抗性学习方法
  • 批准号:
    2306101
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
  • 批准号:
    2239067
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Continuing Grant
CAREER: Unifying Scientific Knowledge with Machine Learning for Forward, Inverse, and Hybrid Modeling of Scientific Systems
职业:将科学知识与机器学习相结合,对科学系统进行正向、逆向和混合建模
  • 批准号:
    2239328
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223985
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223986
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了