Compressive Sampling for Uncertainty Modeling and Quantification of Dynamical Systems Subject to Highly Limited/Incomplete Data
受高度有限/不完整数据影响的动态系统的不确定性建模和量化的压缩采样
基本信息
- 批准号:1724930
- 负责人:
- 金额:$ 29.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will improve the treatment of uncertainty in the process of model identification. It is often useful to mathematically represent both the external influences acting on a real system, and the response of the system to those inputs. The system itself can then be modeled as a mathematical object that converts inputs into responses. Model identification is the process of determining the form of the model -- and of assigning values to any parameters that it may require -- based on observation of the inputs and outputs. Systems that are subject to random variations are called stochastic. When inputs are applied to a stochastic system, it can be difficult to distinguish between the repeatable part of the response and the part of the response due to random fluctuations. This difficulty inevitably causes uncertainty in the resulting system model. The results of this project will enable these uncertainties to be handled as well as possible in several important cases that cannot currently be treated. These are systems that change over time, systems with missing input/response data, and systems with certain types of complex dynamic behavior. The importance of such approaches is paramount for further development of system damage/fault detection procedures. Such diagnostic methods can be integrated in a broader framework for real-time monitoring of the dynamic behavior of the system as well as assessing its reliability. The project will contribute to diverse research fields such as structural dynamics, probabilistic methods, data acquisition and signal processing, as well as structural safety and reliability. For instance, to restore and improve urban infrastructure, uncertainties related to ageing mechanisms and environmental excitations need to be identified and quantified. In addition, e-learning interactive software tools will be deployed online, incorporating research results from this project. This project will advance knowledge in the fields of uncertainty modeling and quantification, with emphasis on stochastic excitation modeling and structural system identification subject to highly limited data. Specific challenges related to modeling of the uncertainties, and the identification of the structural system properties based on knowledge of input-output (excitation-response) data include: (1) measured/available data most often possess evolutionary features, i.e. they exhibit a time-varying behavior, (2) most often there are limited, incomplete and/or missing data, and (3) the system governing equations are highly complex from a mathematics perspective, including nonlinearities and fractional derivatives modeling. Currently, it is not possible to address cases (1), (2), and (3) simultaneously in a consistent, efficient manner. The research objective of this project is to create a compressive sampling based methodology for efficient uncertainty modeling and quantification in the field of stochastic engineering dynamics subject to highly limited data. Specific goals include the development of techniques for spectral analysis and stochastic process statistics estimation subject to incomplete data, as well as for identifying the parameters of nonlinear systems endowed with fractional derivative elements. Preliminary work suggests satisfactory accuracy for up to 80% missing data.
本项目将改进模型辨识过程中不确定性的处理。用数学方法表示作用在真实的系统上的外部影响和系统对这些输入的响应通常是有用的。然后,系统本身可以被建模为将输入转换为响应的数学对象。模型识别是根据对输入和输出的观察确定模型形式并为其可能需要的任何参数赋值的过程。受随机变化影响的系统称为随机系统。当输入应用于随机系统时,很难区分响应的可重复部分和由于随机波动引起的响应部分。这种困难不可避免地会导致系统模型的不确定性。该项目的结果将使这些不确定性能够在目前无法处理的几个重要案件中得到尽可能好的处理。这些是随时间变化的系统,缺少输入/响应数据的系统,以及具有某些类型的复杂动态行为的系统。 这种方法的重要性是至关重要的系统损坏/故障检测程序的进一步发展。这种诊断方法可以集成在一个更广泛的框架中,用于实时监测系统的动态行为以及评估其可靠性。该项目将有助于不同的研究领域,如结构动力学,概率方法,数据采集和信号处理,以及结构安全性和可靠性。例如,为了恢复和改善城市基础设施,需要查明和量化与老化机制和环境激励因素有关的不确定性。此外,将在网上部署电子学习互动软件工具,纳入该项目的研究成果。该项目将推进不确定性建模和量化领域的知识,重点是随机激励建模和结构系统识别受到高度有限的数据。与不确定性建模相关的具体挑战,以及基于输入-输出知识的结构系统特性识别(激发-响应)数据包括:(1)测量的/可用的数据通常具有演化特征,即它们表现出随时间变化的行为,(2)通常存在有限的、不完整的和/或缺失的数据,以及(3)从数学角度来看,系统控制方程是高度复杂的,包括非线性和分数阶导数建模。目前,不可能以一致、有效的方式同时处理情况(1)、(2)和(3)。该项目的研究目标是创建一个基于压缩采样的方法,在随机工程动力学领域的高度有限的数据进行有效的不确定性建模和量化。具体目标包括发展技术的频谱分析和随机过程统计估计不完整的数据,以及用于识别具有分数阶导数元素的非线性系统的参数。初步工作表明,令人满意的准确性高达80%的缺失数据。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectral identification of nonlinear multi-degree-of-freedom structural systems with fractional derivative terms based on incomplete non-stationary data
- DOI:10.1016/j.strusafe.2020.101975
- 发表时间:2020-09
- 期刊:
- 影响因子:5.8
- 作者:K. D. Santos;Olga Brudastova;I. Kougioumtzoglou
- 通讯作者:K. D. Santos;Olga Brudastova;I. Kougioumtzoglou
Extrapolation of random wave field data via compressive sampling
- DOI:10.1016/j.oceaneng.2018.03.044
- 发表时间:2018-06
- 期刊:
- 影响因子:5
- 作者:G. Malara;I. Kougioumtzoglou;F. Arena
- 通讯作者:G. Malara;I. Kougioumtzoglou;F. Arena
Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications
- DOI:10.1016/j.probengmech.2020.103082
- 发表时间:2020-07
- 期刊:
- 影响因子:2.6
- 作者:I. Kougioumtzoglou;Ioannis Petromichelakis;Apostolos F. Psaros
- 通讯作者:I. Kougioumtzoglou;Ioannis Petromichelakis;Apostolos F. Psaros
Compressive Sensing–Based Reconstruction of Sea Free-Surface Elevation on a Vertical Wall
基于压缩感知的垂直壁上无海表面高程重建
- DOI:10.1061/(asce)ww.1943-5460.0000452
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Laface, Valentina;Malara, Giovanni;Romolo, Alessandra;Arena, Felice;Kougioumtzoglou, Ioannis A.
- 通讯作者:Kougioumtzoglou, Ioannis A.
Sparse representations and compressive sampling for enhancing the computational efficiency of the Wiener path integral technique
- DOI:10.1016/j.ymssp.2018.03.056
- 发表时间:2018-10
- 期刊:
- 影响因子:8.4
- 作者:Apostolos F. Psaros;I. Kougioumtzoglou;Ioannis Petromichelakis
- 通讯作者:Apostolos F. Psaros;I. Kougioumtzoglou;Ioannis Petromichelakis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ioannis Kougioumtzoglou其他文献
1169 Postpartum Beat-to-Beat Systolic Blood Pressure Variability in Preeclampsia with Severe Features
- DOI:
10.1016/j.ajog.2023.11.1193 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Anne-Sophie van Wingerden;Maria Katsidoniotaki;Noora Haghighi;Casandra Almonte;Helen Woolcock;Eduard Valdes;Aymen S. Alian;Whitney A. Booker;Natalie Bello;Randolph Marshall;Ioannis Kougioumtzoglou;Nils Petersen;Eliza C. Miller - 通讯作者:
Eliza C. Miller
635 Effect of Medications on Postpartum Cerebral Autoregulation in Preeclampsia with Severe Features
- DOI:
10.1016/j.ajog.2023.11.660 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Helen Woolcock;Maria Katsidoniotaki;Noora Haghighi;Casandra Almonte;Anne-Sophie van Wingerden;Eduard Valdes;Aymen S. Alian;Whitney A. Booker;Natalie Bello;Randolph Marshall;Ioannis Kougioumtzoglou;Nils Petersen;Eliza C. Miller - 通讯作者:
Eliza C. Miller
Ioannis Kougioumtzoglou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ioannis Kougioumtzoglou', 18)}}的其他基金
CAREER: A Path Integral Methodology for Accurate and Computationally Efficient Stochastic Analysis of Diverse Dynamical Systems
职业生涯:用于对不同动力系统进行精确且计算高效的随机分析的路径积分方法
- 批准号:
1748537 - 财政年份:2018
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
相似海外基金
Constitutional and distributional heterogeneity of contaminated soil and its influence on sampling uncertainty
污染土壤的构成和分布异质性及其对采样不确定度的影响
- 批准号:
RGPIN-2019-06227 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Discovery Grants Program - Individual
Constitutional and distributional heterogeneity of contaminated soil and its influence on sampling uncertainty
污染土壤的构成和分布异质性及其对采样不确定度的影响
- 批准号:
RGPIN-2019-06227 - 财政年份:2021
- 资助金额:
$ 29.89万 - 项目类别:
Discovery Grants Program - Individual
Optimization of Sampling Design For Predictive Digital Soil Mapping: Reducing Uncertainty, Improving Predictions and Gaining Efficiencies in Sampling Programs
预测数字土壤测绘的采样设计优化:减少不确定性、改进预测并提高采样计划的效率
- 批准号:
535671-2019 - 财政年份:2021
- 资助金额:
$ 29.89万 - 项目类别:
Postgraduate Scholarships - Doctoral
Constitutional and distributional heterogeneity of contaminated soil and its influence on sampling uncertainty
污染土壤的构成和分布异质性及其对采样不确定度的影响
- 批准号:
RGPIN-2019-06227 - 财政年份:2020
- 资助金额:
$ 29.89万 - 项目类别:
Discovery Grants Program - Individual
Optimization of Sampling Design For Predictive Digital Soil Mapping: Reducing Uncertainty, Improving Predictions and Gaining Efficiencies in Sampling Programs
预测数字土壤测绘的采样设计优化:减少不确定性、改进预测并提高采样计划的效率
- 批准号:
535671-2019 - 财政年份:2020
- 资助金额:
$ 29.89万 - 项目类别:
Postgraduate Scholarships - Doctoral
Constitutional and distributional heterogeneity of contaminated soil and its influence on sampling uncertainty
污染土壤的构成和分布异质性及其对采样不确定度的影响
- 批准号:
RGPIN-2019-06227 - 财政年份:2019
- 资助金额:
$ 29.89万 - 项目类别:
Discovery Grants Program - Individual
Optimization of Sampling Design For Predictive Digital Soil Mapping: Reducing Uncertainty, Improving Predictions and Gaining Efficiencies in Sampling Programs
预测数字土壤测绘的采样设计优化:减少不确定性、改进预测并提高采样计划的效率
- 批准号:
535671-2019 - 财政年份:2019
- 资助金额:
$ 29.89万 - 项目类别:
Postgraduate Scholarships - Doctoral
Stochastic Methods in Fluid Mechanics: Ergodic Properties, Statistical Sampling, and Uncertainty Quantification
流体力学中的随机方法:遍历特性、统计采样和不确定性量化
- 批准号:
1816551 - 财政年份:2018
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
Characterization of the constitutional heterogeneity of contaminated soils and its influence on sampling uncertainty
污染土壤成分异质性表征及其对采样不确定度的影响
- 批准号:
249734-2013 - 财政年份:2017
- 资助金额:
$ 29.89万 - 项目类别:
Discovery Grants Program - Individual
Uncertainty Quantification in Seismic Inversion by Nonlinear Sampling
非线性采样地震反演中的不确定性量化
- 批准号:
1723019 - 财政年份:2017
- 资助金额:
$ 29.89万 - 项目类别:
Continuing Grant