CAREER: A Path Integral Methodology for Accurate and Computationally Efficient Stochastic Analysis of Diverse Dynamical Systems

职业生涯:用于对不同动力系统进行精确且计算高效的随机分析的路径积分方法

基本信息

  • 批准号:
    1748537
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development Program (CAREER) project will support research that will contribute new knowledge for analyzing behavior of complex engineering systems that have random behavior and, in doing so, will promote both the progress of science and advance national prosperity. To analyze and eventually design structural systems requires potent mathematical tools to account for complex response behaviors as well as for the presence of uncertainties in the modeling process. The current state-of-the-art analysis techniques exhibit either high accuracy or computational efficiency but not both. This is inadequate for proper system analysis, design and optimization. The unique feature of the approach, that exhibits both considerable accuracy and computational efficiency, will push the current capabilities of stochastic analysis to unprecedented levels. This will lead to a paradigm shift in the optimization and design of higher quality diverse engineering systems ranging from nano-mechanical oscillators, to vibratory energy harvesters and civil infrastructure systems at reduced cost. The results from this research will benefit the U.S. economy and society in general. The diverse education and outreach plan will also impact the advancement of next-generation researchers and practicing engineers, as well as students and educators via the teaching and learning innovations. Available techniques for solving the governing equations and determining the stochastic response of dynamical systems can be broadly divided into two categories: a) those that exhibit high accuracy, but can handle a very small number of stochastic dimensions due to prohibitive computational cost, and b) those that can readily treat high-dimensional systems, but provide reliable estimates for low-order response statistics only (e.g. mean and standard deviation). In comparison to the current state-of-the-art techniques, the path integral methodology will exhibit superior accuracy and computational efficiency. To achieve high accuracy the research approach is to account for higher order terms (fluctuations) in related path integral expansions. At the same time the error of the methodology will be quantified. To achieve high computational efficiency and account for a large number of stochastic dimensions (100), the research approach is to explore highly sparse representations for the system response in conjunction with appropriate optimization algorithms. The methodology will also be versatile, accounting for cases of complex stochastic excitation and system modeling including fractional derivatives, and non-Gaussian, nonlinear, and hysteretic response behaviors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师早期职业发展计划(Career)项目将支持那些将为分析具有随机行为的复杂工程系统的行为提供新知识的研究,这样做将促进科学的进步和促进国家的繁荣。为了分析和最终设计结构系统,需要强大的数学工具来解释复杂的响应行为以及建模过程中存在的不确定性。当前最先进的分析技术要么表现出高精度,要么表现出计算效率,但不能两者兼而有之。这不足以进行适当的系统分析、设计和优化。该方法的独特之处在于,它显示出相当高的准确性和计算效率,将把当前随机分析的能力推向前所未有的水平。这将导致从纳米机械振荡器到振动能量采集器和低成本民用基础设施系统的高质量多样化工程系统优化和设计的范式转变。这项研究的结果将有利于美国经济和整个社会。多样化的教育和推广计划还将通过教学创新影响下一代研究人员和实践工程师,以及学生和教育工作者的进步。用于求解控制方程和确定动力系统随机响应的可用技术大致可分为两类:a)那些表现出高精度,但由于计算成本过高而只能处理极少数随机维度的技术;b)那些可以很容易地处理高维系统,但只能提供低阶响应统计量(例如平均值和标准差)的可靠估计的技术。与目前最先进的技术相比,路径积分方法将表现出优越的精度和计算效率。为了达到较高的精度,研究方法是在相关的路径积分展开中考虑高阶项(波动)。同时对方法误差进行量化。为了获得较高的计算效率,并考虑到大量的随机维度(100),研究方法是探索系统响应的高度稀疏表示,并结合适当的优化算法。该方法也将是通用的,考虑复杂的随机激励和系统建模的情况,包括分数阶导数,非高斯,非线性和滞后响应行为。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Functional Series Expansions and Quadratic Approximations for Enhancing the Accuracy of the Wiener Path Integral Technique
  • DOI:
    10.1061/(asce)em.1943-7889.0001793
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Apostolos F. Psaros;I. Kougioumtzoglou
  • 通讯作者:
    Apostolos F. Psaros;I. Kougioumtzoglou
A Reduced-Order Wiener Path Integral Formalism for Determining the Stochastic Response of Nonlinear Systems With Fractional Derivative Elements
确定具有分数阶微分元的非线性系统随机响应的降阶维纳路径积分形式
A quadratic Wiener path integral approximation for stochastic response determination of multi-degree-of-freedom nonlinear systems
多自由度非线性系统随机响应确定的二次维纳路径积分近似
  • DOI:
    10.1016/j.probengmech.2022.103319
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Zhao, Ying;Psaros, Apostolos F.;Petromichelakis, Ioannis;Kougioumtzoglou, Ioannis A.
  • 通讯作者:
    Kougioumtzoglou, Ioannis A.
Stochastic response determination and optimization of a class of nonlinear electromechanical energy harvesters: A Wiener path integral approach
  • DOI:
    10.1016/j.probengmech.2018.06.004
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Ioannis Petromichelakis;Apostolos F. Psaros;I. Kougioumtzoglou
  • 通讯作者:
    Ioannis Petromichelakis;Apostolos F. Psaros;I. Kougioumtzoglou
A Wiener Path Integral Formalism for Treating Nonlinear Systems with Non-Markovian Response Processes
  • DOI:
    10.1061/jenmdt.emeng-6873
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Ilias G. Mavromatis;Apostolos F. Psaros;I. Kougioumtzoglou
  • 通讯作者:
    Ilias G. Mavromatis;Apostolos F. Psaros;I. Kougioumtzoglou
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ioannis Kougioumtzoglou其他文献

1169 Postpartum Beat-to-Beat Systolic Blood Pressure Variability in Preeclampsia with Severe Features
  • DOI:
    10.1016/j.ajog.2023.11.1193
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anne-Sophie van Wingerden;Maria Katsidoniotaki;Noora Haghighi;Casandra Almonte;Helen Woolcock;Eduard Valdes;Aymen S. Alian;Whitney A. Booker;Natalie Bello;Randolph Marshall;Ioannis Kougioumtzoglou;Nils Petersen;Eliza C. Miller
  • 通讯作者:
    Eliza C. Miller
635 Effect of Medications on Postpartum Cerebral Autoregulation in Preeclampsia with Severe Features
  • DOI:
    10.1016/j.ajog.2023.11.660
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Helen Woolcock;Maria Katsidoniotaki;Noora Haghighi;Casandra Almonte;Anne-Sophie van Wingerden;Eduard Valdes;Aymen S. Alian;Whitney A. Booker;Natalie Bello;Randolph Marshall;Ioannis Kougioumtzoglou;Nils Petersen;Eliza C. Miller
  • 通讯作者:
    Eliza C. Miller

Ioannis Kougioumtzoglou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ioannis Kougioumtzoglou', 18)}}的其他基金

Compressive Sampling for Uncertainty Modeling and Quantification of Dynamical Systems Subject to Highly Limited/Incomplete Data
受高度有限/不完整数据影响的动态系统的不确定性建模和量化的压缩采样
  • 批准号:
    1724930
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Rough Path理论的分布依赖随机微分方程的平均化原理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于先进CMOS工艺的1-30GHz超宽带N-path滤波器研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带跳的 rough path 理论及其应用
  • 批准号:
    11901104
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
按蚊氨基酸运输蛋白PATH对蚊虫传播疟原虫能力的调控及机制研究
  • 批准号:
    81601793
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study on hydrogen isotope effects in minerals by first-principles path integral molecular dynamics calculations and high-pressure experiments
第一性原理路径积分分子动力学计算和高压实验研究矿物中氢同位素效应
  • 批准号:
    23H01273
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a new program combining path integral method and machine learning for the development of hydrogen storage materials
结合路径积分法和机器学习的储氢材料开发新程序的开发
  • 批准号:
    23K13827
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Path Integral Monte Carlo Simulations of Molecular Dopants in Solid Parahydrogen
固体仲氢中分子掺杂剂的路径积分蒙特卡罗模拟
  • 批准号:
    558762-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Destabilization of wormhole formation by quantum effects: Formulation and illustration with path-integral method
量子效应对虫洞形成的不稳定:用路径积分方法进行公式化和说明
  • 批准号:
    22K03623
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Path Integral Monte Carlo Simulations of Molecular Dopants in Solid Parahydrogen
固体仲氢中分子掺杂剂的路径积分蒙特卡罗模拟
  • 批准号:
    558762-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The path to least resistance: investigating the role of an integral membrane protein family
最小阻力之路:研究完整膜蛋白家族的作用
  • 批准号:
    2610341
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Path Integral Quantum Spin Dynamics
路径积分量子自旋动力学
  • 批准号:
    EP/V037935/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
EAGER: QAC-QSA: A HYBRID QUANTUM-CLASSICAL PATH-INTEGRAL METHOD FOR CHEMICAL DYNAMICS
EAGER:QAC-QSA:化学动力学混合量子经典路径积分方法
  • 批准号:
    2038005
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Real-time path integral methodology for condensed-phase quantum dynamics
凝聚相量子动力学的实时路径积分方法
  • 批准号:
    1955302
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Stochastic Path Integral Formalism and Applications to Coherent Energy Transfer
随机路径积分形式及其在相干能量传输中的应用
  • 批准号:
    1800301
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了