Problems in Euclidean harmonic analysis related to the geometry of curves and surfaces

与曲线和曲面几何相关的欧几里得调和分析问题

基本信息

项目摘要

The purpose of this project is to investigate the properties of a number of operators that play a central role in harmonic analysis. These are the restriction of the Fourier transform, averaging operators, the restricted X-ray transform and maximal operators. What unifies the study of the above is the presence, in each case, of some underlying curve or surface whose geometric properties (e.g. the curvature) determine the mapping properties of the corresponding operators. In many cases it is also natural to aim for estimates that are uniform over large classes of the underlying varieties. These uniform estimates are optimal in a certain sense. In order to achieve our goals, we will need to further our understanding of issues such as the decay properties of the Fourier transform in relation to Newton polyhedral, geometric inequalities involving an important quantity called the affine arc length and their interplay with certain combinatorial techniques.
这个项目的目的是调查的一些运营商,在调和分析中发挥核心作用的属性。它们是傅里叶变换的限制、平均算子、限制的X射线变换和极大算子。统一上述研究的是,在每种情况下,存在一些基本曲线或曲面,其几何性质(例如曲率)决定了相应算子的映射性质。在许多情况下,目标是在大类基础品种上实现统一的估计也是很自然的。这些一致估计在某种意义上是最优的。为了实现我们的目标,我们将需要进一步了解的问题,如衰减性质的傅立叶变换与牛顿多面体,几何不等式涉及一个重要的数量称为仿射弧长和它们的相互作用与某些组合技术。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniform bounds for convolution and restricted X-ray transforms along degenerate curves
  • DOI:
    10.1016/j.jfa.2014.10.012
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Dendrinos;Betsy Stovall
  • 通讯作者:
    S. Dendrinos;Betsy Stovall
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Spyridon Dendrinos, since 1/2014其他文献

Dr. Spyridon Dendrinos, since 1/2014的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Navigating the Curse of Dimensionality in Euclidean Optimization Problems
职业:解决欧几里得优化问题中的维数灾难
  • 批准号:
    2337993
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
  • 批准号:
    2311058
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Topics in Non-Euclidean / Hyperbolic Geometry
非欧几里得/双曲几何主题
  • 批准号:
    2890480
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
GNOMON: Deep Generative Models in non-Euclidean Spaces for Computer Vision & Graphics
GNOMON:计算机视觉非欧几里得空间中的深度生成模型
  • 批准号:
    EP/X011364/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
  • 批准号:
    2311059
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Geometry of Sets and Measures in Euclidean and Non-Euclidean Spaces
欧几里得和非欧空间中的集合和测度的几何
  • 批准号:
    2154613
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel statistical methods for data with non-Euclidean geometric structure
非欧几何结构数据的新颖统计方法
  • 批准号:
    DP220102232
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
21ENGBIO: Bioinspired manufacturing of non-Euclidean morphologies
21ENGBIO:非欧几里得形态的仿生制造
  • 批准号:
    BB/W012715/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Polya conjecture for Euclidean balls
欧几里得球的波利亚猜想
  • 批准号:
    573121-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
NSF-BSF: Nonlinearity, Randomness, and Dynamics: Vistas into the Extreme Mechanics of Non-Euclidean Sheets
NSF-BSF:非线性、随机性和动力学:非欧几里得片的极端力学展望
  • 批准号:
    2108124
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了