Geometry of Sets and Measures in Euclidean and Non-Euclidean Spaces

欧几里得和非欧空间中的集合和测度的几何

基本信息

  • 批准号:
    2154613
  • 负责人:
  • 金额:
    $ 36.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The modern world is awash in data. The task of organizing large amounts of data in useful and ordered ways can be formulated in mathematical terms. This project investigates mathematical analogs of questions such as the following: How much data can we expect to organize in a useful way? What type of geometric structures arise in the process of such organization? Do these answers change if we allow ourselves to disregard a certain amount of information, and can the impact of such a choice be quantified? Finally, are there practical algorithms to implement such data organization? In geometric language, data naturally resides in a high dimensional space or a space where the notion of distance is quite different from the Euclidean one. This project aims at transferring well studied and efficient tools for analysis from low-dimensional Euclidean spaces to higher-dimensional and more general settings, allowing high-dimensional data to be "visualized" in a lower-dimensional, structured environment. The project will involve the training and mentoring of graduate students and postdocs and aims to develop tools which can lead to engagement between pure mathematicians and the data science community.In many applications one is given a large data set, represented as a subset of a high-dimensional space, and one seeks to faithfully represent a large portion of this data set in a space of substantially lower dimension. "Faithfully" here means that essential geometric features are either preserved or mildly distorted. The Lipschitz condition for a geometric transformation quantifies the distortion of distances between data points. To date, the preceding task has received attention from computer scientists and applied mathematicians using a range of approaches. This project investigates mathematical approaches rooted in analysis and geometry. A key point is that often the given data has additional geometric structure, for example, it may have small Hausdorff dimension or be close to a union of low dimensional manifolds. Such added structure allows for the use of tools from harmonic analysis and geometric measure theory, especially, the theory of rectifiability. A quantitative version of this theory, known as uniform rectifiability, will be explored in novel metric settings. Other topics to be considered include quantitative improvements of low rank factorization theorems, Lipschitz decompositions of metric measure spaces, low-distortion factorization of bi-Lipschitz mappings, and Lipschitz parameterizations of high-dimensional spaces with parameterizing dimension greater than one.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代世界充斥着数据。以有用和有序的方式组织大量数据的任务可以用数学术语来表达。这个项目研究的问题,如以下数学类比:有多少数据,我们可以期望组织在一个有用的方式?在这样的组织过程中产生了什么样的几何结构?如果我们允许自己忽略一定数量的信息,这些答案会改变吗?这种选择的影响可以量化吗?最后,是否有实用的算法来实现这样的数据组织?在几何语言中,数据自然地驻留在高维空间或距离概念与欧几里德距离概念完全不同的空间中。该项目旨在将经过充分研究的有效分析工具从低维欧几里得空间转移到高维和更一般的环境中,使高维数据在低维结构化环境中“可视化”。该项目将涉及对研究生和博士后的培训和指导,旨在开发可以导致纯数学家和数据科学社区之间参与的工具。在许多应用中,人们被赋予一个大的数据集,表示为高维空间的子集,并且人们试图在低维空间中忠实地表示这个数据集的大部分。“忠实地”在这里意味着基本的几何特征要么被保留要么被轻微扭曲。几何变换的Lipschitz条件量化了数据点之间距离的失真。到目前为止,前面的任务已经得到了计算机科学家和应用数学家使用一系列方法的关注。这个项目研究植根于分析和几何的数学方法。一个关键点是,通常给定的数据具有额外的几何结构,例如,它可能具有小的Hausdorff维数或接近于低维流形的并集。这种增加的结构允许使用来自谐波分析和几何测量理论的工具,特别是可整流性理论。这个理论的定量版本,被称为均匀整流性,将探讨在新的度量设置。其他要考虑的主题包括低秩因子分解定理的定量改进,度量测度空间的Lipschitz分解,双Lipschitz映射的低失真因子分解,和Lipschitz参数化该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查进行评估来支持的搜索.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raanan Schul其他文献

Multiscale Analysis of 1-rectifiable Measures II: Characterizations
1-可纠正措施的多尺度分析 II:特征
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Badger;Raanan Schul
  • 通讯作者:
    Raanan Schul
Universal Local Parametrizations via Heat Kernels and Eigenfunctions of the Laplacian
通过热核和拉普拉斯本征函数的通用局部参数化
  • DOI:
    10.5186/aasfm.2010.3508
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter W. Jones;M. Maggioni;Raanan Schul
  • 通讯作者:
    Raanan Schul
Two sufficient conditions for rectifiable measures
纠正措施的两个充分条件
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Badger;Raanan Schul
  • 通讯作者:
    Raanan Schul
Bi-Lipschitz Decomposition of Lipschitz functions into a Metric space
Bi-Lipschitz 将 Lipschitz 函数分解为度量空间
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raanan Schul
  • 通讯作者:
    Raanan Schul
Hard Sard: Quantitative Implicit Function and Extension Theorems for Lipschitz Maps
Hard Sard:Lipschitz 映射的定量隐式函数和可拓定理
  • DOI:
    10.1007/s00039-012-0189-0
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Jonas Azzam;Raanan Schul
  • 通讯作者:
    Raanan Schul

Raanan Schul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raanan Schul', 18)}}的其他基金

Conference on Analysis, Dynamics, Geometry, and Probability
分析、动力学、几何和概率会议
  • 批准号:
    1954590
  • 财政年份:
    2020
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Standard Grant
Rectifiability of Measures in Euclidean and Metric Spaces
欧几里得和度量空间中测度的可修正性
  • 批准号:
    1763973
  • 财政年份:
    2018
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Continuing Grant
Conference in Geometry, Analysis, and Probability
几何、分析和概率会议
  • 批准号:
    1700209
  • 财政年份:
    2017
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Standard Grant
Geometric Measure Theory and Geometric Function Theory
几何测度论和几何函数论
  • 批准号:
    1361473
  • 财政年份:
    2014
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Continuing Grant
Harmonic Analysis, Geometric Measure Theory and Applications
调和分析、几何测量理论及应用
  • 批准号:
    1100008
  • 财政年份:
    2011
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Faithful Data Representations. Multiscale Analysis and Diffusion Processes
谐波分析和忠实的数据表示。
  • 批准号:
    0965766
  • 财政年份:
    2009
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Faithful Data Representations. Multiscale Analysis and Diffusion Processes
谐波分析和忠实的数据表示。
  • 批准号:
    0800837
  • 财政年份:
    2008
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
  • 批准号:
    0502747
  • 财政年份:
    2005
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Fellowship

相似国自然基金

基于Fuzzy Sets的视频差错掩盖技术研究
  • 批准号:
    60672134
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Rectifiability and Fine Geometry of Sets, Radon Measures, Harmonic Functions, and Temperatures
集合的可整流性和精细几何、氡气测量、调和函数和温度
  • 批准号:
    2154047
  • 财政年份:
    2022
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Standard Grant
Combinatorial Properties of Convex Sets and Measures in Euclidean spaces
欧几里得空间中凸集和测度的组合性质
  • 批准号:
    1764237
  • 财政年份:
    2018
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Standard Grant
Combinatorial Properties of Convex Sets and Measures in Euclidean spaces
欧几里得空间中凸集和测度的组合性质
  • 批准号:
    1851420
  • 财政年份:
    2018
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Standard Grant
Geometry of Sets and Measures
集合和测度的几何
  • 批准号:
    1500382
  • 财政年份:
    2015
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Continuing Grant
Definable sets and measures in finite, pseudofinite, and profinite structures
有限、伪有限和有限结构中的可定义集合和测度
  • 批准号:
    EP/K020692/1
  • 财政年份:
    2013
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Research Grant
Cantor sets and measures in harmonic analysis
调和分析中的康托集和测量
  • 批准号:
    432490-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 36.99万
  • 项目类别:
    University Undergraduate Student Research Awards
Cantor sets and measures in harmonic analysis
调和分析中的康托集和测量
  • 批准号:
    445487-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 36.99万
  • 项目类别:
    University Undergraduate Student Research Awards
Harmonic measures, potentials, approximation and polynomials inequalities on general sets
一般集上的调和测度、势、近似和多项式不等式
  • 批准号:
    0097484
  • 财政年份:
    2001
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Standard Grant
Polydisc, fine limits, polar sets, carleson measures
多圆盘、精细极限、极坐标集、卡尔森测量
  • 批准号:
    89729-1992
  • 财政年份:
    1994
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Sciences: "Percolation on Trees, Intersections of Random Sets, and Measures of Full Hausdorff Dimension"
数学科学:“树上的渗透、随机集的交集以及完整豪斯多夫维度的测量”
  • 批准号:
    9404391
  • 财政年份:
    1994
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了