SPX: Collaborative Research: Asynchronous, Parallel-Adaptive Solution of Extreme Multiscale Problems in Seismology
SPX:协作研究:地震学中极端多尺度问题的异步、并行自适应解决方案
基本信息
- 批准号:1725544
- 负责人:
- 金额:$ 62.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This collaborative project among scientists at the University of Illinois and the University of Tennessee will develop parallel software for efficient earthquake simulations on exascale supercomputers. State-of-the-art systems now resolve seismic response at frequencies up to 1 Hz, but design engineers require resolution up to 10 Hz. Synchronization barriers may limit performance on exascale systems. This project will develop scalable, barrier-free asynchronous simulation tools and space-time adaptive meshing to meet the seismic resolution requirements on exascale platforms. It will develop improved fault-gouge physics models and extend asynchronous hyperbolic solvers to address elliptic (and eventually parabolic) systems. These extensions will enable the first regional, full-cycle seismic simulations, covering fast earthquake events and much slower crustal motion between earthquakes, as well as the use of asynchronous exascale solvers in most PDE-based scientific and engineering applications. The asynchronous solution technology will support more reliable earthquake hazard maps and the design of safer, more economical earthquake-resistant buildings and infrastructure. In view of its broad applicability, the unprecedented simulation power afforded by this research could trigger numerous breakthroughs in the commercial and defense sectors. Four graduate research assistants will receive cross-disciplinary training, and undergraduate students will participate through the National Center for Supercomputing Application?s SPIN (Students Pushing INnovation) program.This collaborative project among scientists at the University of Illinois and the University of Tennessee will develop parallel software for efficient earthquake simulations on exascale supercomputers. State-of-the-art systems now resolve seismic response at frequencies up to 1 Hz, but design engineers require resolution up to 10 Hz. Synchronization barriers and load balancing across subdomains may limit performance on exascale systems. This project will replace the standard bulk synchronous parallel model and Domain Decomposition Method (DDM) with scalable, barrier-free asynchronous solvers and space-time adaptive meshing without DDM to meet the seismic resolution requirements on exascale platforms. It will develop Shear Transition Zone models for fault-gouge physics and use pseudo-time methods to extend asynchronous hyperbolic solvers to address elliptic (and eventually parabolic) systems. These extensions will enable the first regional, full-cycle seismic simulations, covering fast earthquake events and much slower crustal motion between earthquakes, as well as the use of asynchronous exascale solvers in most PDE-based scientific and engineering applications. The asynchronous solution technology will support more reliable earthquake hazard maps and the design of safer, more economical earthquake-resistant buildings and infrastructure. In view of its broad applicability, the unprecedented simulation power afforded by this research could trigger numerous breakthroughs in the commercial and defense sectors. Four graduate research assistants will receive cross-disciplinary training, and undergraduate students will participate through the National Center for Supercomputing Application?s SPIN (Students Pushing INnovation) program
伊利诺伊大学和田纳西大学科学家之间的合作项目将开发并行软件,以在Exascale超级计算机上有效地震模拟。现在,最先进的系统可以在最高1 Hz的频率下解决地震响应,但是设计工程师需要分辨率高达10 Hz。同步障碍可能会限制Exascale系统的性能。该项目将开发可扩展的,无障碍的异步模拟工具和时空自适应网格,以满足Exascale平台上的地震分辨率要求。它将开发改进的断层物理模型,并扩展异步双曲线求解器,以解决椭圆形(最终是抛物线)系统。这些扩展将使第一个区域全周的地震模拟能够涵盖地震快速事件和地震之间的较慢的地壳运动,以及在大多数基于PDE的科学和工程应用中使用异步Exascale求解器的使用。异步解决方案技术将支持更可靠的地震危险图,并设计更安全,更经济的地震建筑物和基础设施。鉴于其广泛的适用性,这项研究提供的前所未有的模拟能力可能会引发商业和国防部门的许多突破。四名研究生研究助理将接受跨学科的培训,本科生将通过国家超级计算应用程序中心的旋转中心(推动创新)计划参与。这项协作项目与伊利诺伊大学和田纳西大学的科学家之间的合作项目将开发并行软件,以在Exascale Superputers上进行有效的地震模拟。现在,最先进的系统可以在最高1 Hz的频率下解决地震响应,但是设计工程师需要分辨率高达10 Hz。跨子域的同步障碍和负载平衡可能会限制Exascale系统的性能。该项目将用可扩展的,无屏障的异步求解器和无DDM的时空自适应网格划分来替换标准批量同步平行模型和域分解方法(DDM),以满足Exascale平台上的地震分辨率要求。它将开发用于断层物理学的剪切过渡区模型,并使用伪时间方法扩展异步双曲线求解器以解决椭圆形(最终抛物线)系统。这些扩展将使第一个区域全周的地震模拟能够涵盖地震快速事件和地震之间的较慢的地壳运动,以及在大多数基于PDE的科学和工程应用中使用异步Exascale求解器的使用。异步解决方案技术将支持更可靠的地震危险图,并设计更安全,更经济的地震建筑物和基础设施。鉴于其广泛的适用性,这项研究提供的前所未有的模拟能力可能会引发商业和国防部门的许多突破。四名研究生研究助理将接受跨学科培训,本科生将通过国家超级计算应用中心的旋转(学生推动创新)计划参加
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Use of loss limit approach to zero in scattering-based parameter retrieval of elastic micro-structured media
- DOI:10.1016/j.ijsolstr.2020.05.010
- 发表时间:2020-09
- 期刊:
- 影响因子:3.6
- 作者:R. Abedi;A. Amirkhizi
- 通讯作者:R. Abedi;A. Amirkhizi
A Stochastic Bulk Damage Model Based on Mohr-Coulomb Failure Criterion for Dynamic Rock Fracture
- DOI:10.3390/app9050830
- 发表时间:2019-03-01
- 期刊:
- 影响因子:2.7
- 作者:Bahmani, Bahador;Abedi, Reza;Clarke, Philip L.
- 通讯作者:Clarke, Philip L.
Spacetime simulation of dynamic fracture with crack closure and frictional sliding
具有裂纹闭合和摩擦滑动的动态断裂时空模拟
- DOI:10.1186/s40323-018-0116-5
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Abedi, Reza;Haber, Robert B.
- 通讯作者:Haber, Robert B.
Comparison of Interfacial and Continuum Models for Dynamic Fragmentation Analysis
- DOI:10.1115/imece2018-88294
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:B. Bahmani;P. Clarke;R. Abedi
- 通讯作者:B. Bahmani;P. Clarke;R. Abedi
Random Field Realization and Fracture Simulation of Rocks With Angular Bias for Fracture Strength
- DOI:
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:J. Garrard;R. Abedi;P. Clarke
- 通讯作者:J. Garrard;R. Abedi;P. Clarke
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Haber其他文献
TCT-253 Calling 911 Anywhere Best Determines Reduction in Total Ischemia Time in ST-Elevation Myocardial Infarction (STEMI)
- DOI:
10.1016/j.jacc.2013.08.988 - 发表时间:
2013-10-29 - 期刊:
- 影响因子:
- 作者:
Bryan H. Wilson;John Cedarholm;Angela D. Humphrey;William Downey;Glen Fandetti;J. Lee Garvey;Robert Haber;Glen Kowalchuk;Michael Rinaldi - 通讯作者:
Michael Rinaldi
Robustness Properties of Extended Horizon Nonlinear Predictive Control Strategies Applied for the Hammerstein Model
- DOI:
10.1016/s1474-6670(17)42626-7 - 发表时间:
1997-06-01 - 期刊:
- 影响因子:
- 作者:
Robert Haber;Ruth Bars;Zoltán Czipríán - 通讯作者:
Zoltán Czipríán
Adaptive Predictive Control of Nonlinear Dynamic Processes
- DOI:
10.1016/s1474-6670(17)45383-3 - 发表时间:
1995-06-01 - 期刊:
- 影响因子:
- 作者:
Robert Haber;Ruth Bars - 通讯作者:
Ruth Bars
Extended Horizon Predictive Control of Non-Linear Systems - Multi-Dimensional Optimisation and Suboptimal Solution
- DOI:
10.1016/s1474-6670(17)43676-7 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:
- 作者:
Robert Haber;Ruth Bars - 通讯作者:
Ruth Bars
Robust Design of PID and IMC-Based Controllers in the Time Domain
- DOI:
10.1016/s1474-6670(17)42633-4 - 发表时间:
1997-06-01 - 期刊:
- 影响因子:
- 作者:
Robert Haber;Ruth Bars - 通讯作者:
Ruth Bars
Robert Haber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Haber', 18)}}的其他基金
EAGER Proposal: Adaptive Spacetime Discontinuous Galerkin Methods in 3D x time
EAGER 提案:3D x 时间的自适应时空不连续伽辽金方法
- 批准号:
0948393 - 财政年份:2009
- 资助金额:
$ 62.13万 - 项目类别:
Standard Grant
ITR/AP: Multiscale Models for Microstructure Simulation and Process Design
ITR/AP:用于微观结构仿真和工艺设计的多尺度模型
- 批准号:
0121695 - 财政年份:2001
- 资助金额:
$ 62.13万 - 项目类别:
Continuing Grant
OPAAL: Simulation and Optimization of Casting and Extrusion Processes
OPAAL:铸造和挤压工艺的模拟和优化
- 批准号:
9873945 - 财政年份:1998
- 资助金额:
$ 62.13万 - 项目类别:
Continuing Grant
GOALI/IUCP: Process Modeling and Optimization for Crashworthiness of Extruded Aluminum Components
GOALI/IUCP:挤压铝部件耐撞性的工艺建模和优化
- 批准号:
9700460 - 财政年份:1997
- 资助金额:
$ 62.13万 - 项目类别:
Continuing Grant
Mechanical Sciences: Eulerian-Lagrangian Kinematic Models inFracture Mechanics
机械科学:断裂力学中的欧拉-拉格朗日运动学模型
- 批准号:
8400654 - 财政年份:1984
- 资助金额:
$ 62.13万 - 项目类别:
Standard Grant
Research Initiation: Nonlinear Contact-Slip Analysis Using Mixed Eulerian-Lagrangian Displacements
研究启动:使用混合欧拉-拉格朗日位移的非线性接触滑移分析
- 批准号:
8105531 - 财政年份:1981
- 资助金额:
$ 62.13万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 62.13万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 62.13万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 62.13万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 62.13万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 62.13万 - 项目类别:
Standard Grant