SPX: Secure, Highly-Parallel Training of Deep Neural Networks in the Cloud Using General-Purpose Shared-Memory Platforms

SPX:使用通用共享内存平台在云中对深度神经网络进行安全、高度并行的训练

基本信息

项目摘要

Society is beginning to witness an explosion in the use of Deep Neural Networks (DNNs), with major impacts on many facets of human life, including health, finances, family life, and entertainment. To train DNNs, practitioners have preferred to use GPUs and, recently, specialized hardware accelerators.  Despite constituting the bulk of a data center?s compute resources, general-purpose shared-memory multiprocessors have been regarded as unattractive platforms. In this project, the Principal Investigators (PIs) think that these platforms have high potential. Consequently, this project will develop new techniques to dramatically improve shared-memory multiprocessor performance in training DNNs.  Already, shared-memory servers are compelling for several reasons: they can support a high-degree of parallelism, are general-purpose and easy to program, and provide flexible, fine-grain inter-core communication.  However, efficiently using shared-memory servers to train DNNs imposes significant challenges. First, fine-grain synchronization is still expensive, and latencies are non-trivial. In addition, when DNN training moves to an environment with multiple users sharing the same physical shared-memory platform in the cloud, privacy and integrity become major concerns.To overcome these challenges, this project will synergistically address architecture and security issues.  On the architecture side, it will augment a highly-parallel shared-memory server with support for synchronization, data movement, data sharing, and DNN sparsity structuring.  On the security side, it will investigate how shared-memory servers create novel privacy and integrity threats (for example, leaking the DNN?s sparse structure and forcing incorrect model generation), and how to defend against those threats.  The project?s broader impact is to help enable ?neural network training for everyone,? by making a ubiquitous and easy-to-program platform a viable and safe target for running these important, emerging workloads.
社会开始见证深度神经网络(DNN)的使用爆炸式增长,对人类生活的许多方面产生了重大影响,包括健康、财务、家庭生活和娱乐。为了培训DNN,从业者更喜欢使用GPU,最近还使用了专门的硬件加速器。尽管构成了数据中心的主体?S在计算资源方面,通用共享内存多处理器一直被认为是没有吸引力的平台。在这个项目中,首席调查员(PI)认为这些平台具有很高的潜力。因此,这个项目将开发新的技术来显著提高共享内存多处理器在训练DNN中的性能。目前,共享内存服务器之所以引人注目,有几个原因:它们可以支持高度的并行性,它们是通用的,易于编程,并提供灵活的、细粒度的核心间通信。然而,有效地使用共享内存服务器来训练DNN带来了巨大的挑战。首先,细粒度同步仍然昂贵,延迟也不是微不足道的。此外,当DNN培训迁移到云中多个用户共享同一物理共享内存平台的环境时,隐私和完整性成为主要关注的问题。为了克服这些挑战,该项目将协同解决架构和安全问题。在架构方面,它将增加一个高度并行的共享内存服务器,支持同步、数据移动、数据共享和DNN稀疏结构化。在安全方面,它将调查共享内存服务器如何造成新的隐私和完整性威胁(例如,泄露DNN?S稀疏结构和强制错误的模型生成),以及如何防御这些威胁。这个项目是什么?S更广泛的影响是帮助实现?为每个人提供神经网络培训。通过使无处不在且易于编程的平台成为运行这些重要的新兴工作负载的可行且安全的目标。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SparseTrain: Leveraging Dynamic Sparsity in Software for Training DNNs on General-Purpose SIMD Processors
Game of Threads: Enabling Asynchronous Poisoning Attacks
SAVE: Sparsity-Aware Vector Engine for Accelerating DNN Training and Inference on CPUs
Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures
  • DOI:
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mengjia Yan;Christopher W. Fletcher;J. Torrellas
  • 通讯作者:
    Mengjia Yan;Christopher W. Fletcher;J. Torrellas
MicroScope: enabling microarchitectural replay attacks
MicroScope:启用微架构重放攻击
  • DOI:
    10.1145/3307650.3322228
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Skarlatos, Dimitrios;Yan, Mengjia;Gopireddy, Bhargava;Sprabery, Read;Torrellas, Josep;Fletcher, Christopher W.
  • 通讯作者:
    Fletcher, Christopher W.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Josep Torrellas其他文献

Software Trace Cache for Commercial Applications
  • DOI:
    10.1023/a:1019992713965
  • 发表时间:
    2002-10-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Alex Ramirez;Josep Ll. Larriba-Pey;Carlos Navarro;Mateo Valero;Josep Torrellas
  • 通讯作者:
    Josep Torrellas
An Empirical Study of the Effect of Source-level Transformations on Compiler Stability
源代码级转换对编译器稳定性影响的实证研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhangxiaowen Gong;Zhi Chen;J. Szaday;David C. Wong;Zehra Sura;Neftali Watkinson;Saeed Maleki;David Padua;Alexandru Nicolau;A. Veidenbaum;Josep Torrellas
  • 通讯作者:
    Josep Torrellas
Uncorq: Unconstrained Snoop Request Delivery in Embedded-Ring Multiprocessors
Uncorq:嵌入式环多处理器中无约束的侦听请求传送

Josep Torrellas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Josep Torrellas', 18)}}的其他基金

Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316233
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SHF: Medium: Cross-Cutting Effort to Make Non-Volatile Memories Truly Usable
SHF:中:使非易失性存储器真正可用的跨领域努力
  • 批准号:
    2107470
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
PPoSS: Planning: A Cross-Layer Approach to Accelerate Large-Scale Graph Computations on Distributed Platforms
PPoSS:规划:加速分布式平台上大规模图计算的跨层方法
  • 批准号:
    2028861
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CNS Core: Medium: Rethinking Architecture and Operating Systems for Modern Virtualization Technologies
CNS 核心:中:重新思考现代虚拟化技术的架构和操作系统
  • 批准号:
    1956007
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CSR: Medium: Effective Control to Maximize Resource Efficiency in Large Clusters; Hardware, Runtime, and Compiler Perspectives
CSR:中:有效控制以最大化大型集群中的资源效率;
  • 批准号:
    1763658
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Technologies for Ultra Energy-Efficient Multicores
超节能多核技术
  • 批准号:
    1649432
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
XPS: FULL: Breaking the Scalability Wall of Shared Memory through Fast On-Chip Wireless Communication
XPS:FULL:通过快速片上无线通信打破共享内存的可扩展性壁垒
  • 批准号:
    1629431
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Computer Architecture for Scripting Languages
SHF:小型:脚本语言的计算机体系结构
  • 批准号:
    1527223
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SHF: Large: Collaborative Research: Designing the Programmable Many-Core for Extreme Scale Computing
SHF:大型:协作研究:为超大规模计算设计可编程众核
  • 批准号:
    1536795
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CSR: Small: A Framework for Advanced Concurrency Debugging
CSR:小型:高级并发调试框架
  • 批准号:
    1116237
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Ultra-Dense, Highly Secure and Intelligent Wireless Communications for 5G and Beyond
面向 5G 及更高技术的超密集、高度安全和智能无线通信
  • 批准号:
    RGPIN-2018-06254
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Trustd: Highly-secure, trusted and decentralised digital assets custodial solution
Trustd:高度安全、可信、去中心化的数字资产托管解决方案
  • 批准号:
    10031884
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Feasibility Studies
Ultra-Dense, Highly Secure and Intelligent Wireless Communications for 5G and Beyond
面向 5G 及更高技术的超密集、高度安全和智能无线通信
  • 批准号:
    RGPIN-2018-06254
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
I-Corps: Highly secure anticounterfeiting tags with deep learning software for reliable product authentication
I-Corps:高度安全的防伪标签,配备深度学习软件,可实现可靠的产品认证
  • 批准号:
    2136807
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Ultra-Dense, Highly Secure and Intelligent Wireless Communications for 5G and Beyond
面向 5G 及更高技术的超密集、高度安全和智能无线通信
  • 批准号:
    DGDND-2018-00018
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Low Latency and Highly Secure Protocols for Critical Communications
适用于关键通信的低延迟和高度安全协议
  • 批准号:
    494694-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative Research and Development Grants
Ultra-Dense, Highly Secure and Intelligent Wireless Communications for 5G and Beyond
面向 5G 及更高技术的超密集、高度安全和智能无线通信
  • 批准号:
    RGPIN-2018-06254
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Development of highly secure and reliable authentication system based on physically unclonable hardware identifier
基于物理不可克隆硬件标识符的高安全可靠认证系统开发
  • 批准号:
    20K19765
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an Affordable and Flexible Solution for SMEs to Establish and Run a Highly Secure Remote-Working System, Resulting in Improved Efficiency
为中小企业开发经济实惠且灵活的解决方案,以建立和运行高度安全的远程工作系统,从而提高效率
  • 批准号:
    88358
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
Enabling simple and highly secure authentication from printed polymer materials
通过印刷聚合物材料实现简单且高度安全的身份验证
  • 批准号:
    83414
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了