MRI: Acquisition of a GPU-Based Cloud Infrastructure for Inter-/Multi-Disciplinary Research and Education at a Primarily Undergraduate Institution

MRI:采购基于 GPU 的云基础设施,用于主要本科机构的跨/多学科研究和教育

基本信息

  • 批准号:
    1726017
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

This project, acquiring equipment to establish a GPU-based cloud, aims to enable big data related interdisciplinary projects, specifically collaborative research projects in computer science, large-scale medical data, computational chemistry, and geology. These include:- Intelligent Internet of Things (IoT),- Smart Health,- Spatial Computing, and - Computational ChemistryThe intelligent IOT research would utilize the infrastructure to develop new deep learning models to enable smart living and navigation for vision impaired people. The big data enriched health research expects to find effective solutions to solve problems of obesity and non-communicable chronic diseases, serious threats to public health in the US and globally, using the instrumentation to compute the models with enormous health data. The geoscience research would enabled the establishment of "American Spatial Data Portal" (ASDP) that will provide a central repository of spatial data to expedite research on geospatial data mining and applications. A cloud geospatial education system would be developed on the instrument to transform the nation's geoscience education. The computational chemistry research would take advantage of the computation capability of the cloud to discover, design, and evaluate new and low costs catalysts for important chemical reactions, which could significantly change the life of the world. This GPU-based cloud is expected to facilitate the data and computation intensive research progress across many disciplines not only at this mainly undergraduate university, but also at other institutions through authorized and scheduled remote access. Furthermore, the infrastructure would be shared via high speed internet to other colleagues in the nation, and to international collaborators who are interested. Broader Impacts: By involving students in the activities of installation, configuration, and instrumentation, this project would provide valuable opportunities to train future scientists, engineers, and instrumentalists. The developed new cross-list courses and summer training program would train hundreds of both senior and graduate students on GPU and big data related knowledge and skills. Moreover, due to the appropriate mentoring that the investigators are able to offer, overall students and minorities can benefit.
本项目通过获取设备建立基于gpu的云,旨在实现与大数据相关的跨学科项目,特别是计算机科学、大规模医疗数据、计算化学、地质等领域的协同研究项目。其中包括:智能物联网(IoT)、智能健康、空间计算和计算化学。智能物联网研究将利用基础设施开发新的深度学习模型,为视障人士实现智能生活和导航。大数据丰富的健康研究期望找到有效的解决方案,以解决肥胖和非传染性慢性疾病的问题,严重威胁美国和全球的公共健康,使用仪器计算具有大量健康数据的模型。地球科学研究将使“美国空间数据门户”(ASDP)的建立成为可能,该门户将提供空间数据的中央存储库,以加快地理空间数据挖掘和应用的研究。将在该仪器上开发云地理空间教育系统,以改变国家的地球科学教育。计算化学研究将利用云的计算能力来发现、设计和评估新的低成本催化剂,用于重要的化学反应,这可能会显著改变世界的生活。这种基于gpu的云预计将促进跨多个学科的数据和计算密集型研究进展,不仅在这所主要的本科大学,而且在其他机构通过授权和计划的远程访问。此外,基础设施将通过高速互联网共享给国内的其他同事,以及感兴趣的国际合作者。更广泛的影响:通过让学生参与安装、配置和仪器的活动,该项目将为培养未来的科学家、工程师和仪器学家提供宝贵的机会。新开发的交叉列表课程和暑期培训项目将培训数百名GPU和大数据相关知识和技能的大四和研究生。此外,由于调查人员能够提供适当的指导,所有学生和少数民族都能从中受益。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Learning Driven Wireless Real-time Human Activity Recognition
深度学习驱动的无线实时人体活动识别
Indoor Multi-Sensory Self-Supervised Autonomous Mobile Robotic Navigation
室内多感官自监督自主移动机器人导航
Non-Contact Non-Invasive Heart and Respiration Rates Monitoring with MIMO Radar Sensing
利用 MIMO 雷达感应进行非接触式非侵入式心脏和呼吸频率监测
  • DOI:
    10.1109/glocom.2018.8648106
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Qiwei;Guo, Hanqing;Xu, Junhong;Wang, Honggang;Kageza, Aron;AlQarni, Saeed;Wu, Shaoen
  • 通讯作者:
    Wu, Shaoen
DSIC: Deep Learning Based Self-Interference Cancellation for In-Band Full Duplex Wireless
Shared Multi-Task Imitation Learning for Indoor Self-Navigation
  • DOI:
    10.1109/glocom.2018.8647614
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junhong Xu;Qiwei Liu;Hanqing Guo;Aaron Kageza;Saeed AlQarni;Shaoen Wu
  • 通讯作者:
    Junhong Xu;Qiwei Liu;Hanqing Guo;Aaron Kageza;Saeed AlQarni;Shaoen Wu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaoen Wu其他文献

Security Risks Concerns of Generative AI in the IoT
物联网中生成式人工智能的安全风险问题
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Honghui Xu;Yingshu Li;Olusesi Balogun;Shaoen Wu;Yue Wang;Zhipeng Cai
  • 通讯作者:
    Zhipeng Cai
Interference Mitigation for Wireless Body Area Networks with Fast Convergent Game
通过快速收敛博弈减轻无线体域网的干扰
  • DOI:
    10.1109/glocom.2017.8255013
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tigang Jiang;Honggang Wang;Shaoen Wu
  • 通讯作者:
    Shaoen Wu
Opportunistic Random Access with Temporal Fairness in Wireless Networks
无线网络中具有时间公平性的机会随机接入
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chong Tang;Jagadeesh Balasubramani;Lixing Song;Shaoen Wu;S. Biaz
  • 通讯作者:
    S. Biaz
Real Time 3D Indoor Human Image Capturing Based on FMCW Radar
基于FMCW雷达的实时3D室内人体图像捕获
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanqing Guo;N. Zhang;Wenjun Shi;Saeed AlQarni;Shaoen Wu
  • 通讯作者:
    Shaoen Wu
ERA : An Efficient Rate Adaption Algorithm with Fragmentation
ERA:一种高效的分片速率自适应算法
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Biaz;Shaoen Wu
  • 通讯作者:
    Shaoen Wu

Shaoen Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaoen Wu', 18)}}的其他基金

RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    2300955
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    2109971
  • 财政年份:
    2020
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    1923712
  • 财政年份:
    2019
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
RUI: CCSS: Collaborative Research: Cooperative Unmanned Aerial Vehicles Enabled Scalable Mobile Panoramic Video Surveillance
RUI:CCSS:协作研究:协作无人机实现可扩展移动全景视频监控
  • 批准号:
    1408165
  • 财政年份:
    2014
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: CI-TEAM Demonstration Project: IT Quadra-S, Information Technology Workforce Training Initiative for Spectator Sports Safety and Security
合作研究:CI-TEAM 示范项目:IT Quadra-S,针对观众体育安全和安保的信息技术劳动力培训计划
  • 批准号:
    1041292
  • 财政年份:
    2010
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant

相似海外基金

Equipment: MRI: Track 1 Acquisition of NVIDIA DGX H100 GPU system for research and education at VCU
设备: MRI:轨道 1 采购 NVIDIA DGX H100 GPU 系统,用于 VCU 的研究和教育
  • 批准号:
    2316003
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a GPU-Accelerated Computing Cluster for Advanced Optimization and Design in Multidisciplinary Research and Education
设备:MRI:Track 1 获取 GPU 加速计算集群,用于多学科研究和教育中的高级优化和设计
  • 批准号:
    2320649
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
  • 批准号:
    2215388
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU-accelerated cluster for research, training and outreach
MRI:获取 GPU 加速集群用于研究、培训和推广
  • 批准号:
    2215734
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Research Infrastructure: MRI: Acquisition of a GPU Cluster to Advance the Land Grant Mission at Washington State University Using AI-Driven Research
研究基础设施:MRI:收购 GPU 集群,利用人工智能驱动的研究推进华盛顿州立大学的土地授予任务
  • 批准号:
    2216108
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Cutting-Edge GPU and MPI Nodes for the Interdisciplinary Pitt Center for Research Computing
MRI:为跨学科皮特研究计算中心采购尖端 GPU 和 MPI 节点
  • 批准号:
    2117681
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU/CPU computing cluster for research and education in computational chemistry and materials
MRI:收购 GPU/CPU 计算集群,用于计算化学和材料的研究和教育
  • 批准号:
    2117956
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU Cluster for Multi-Disciplinary Research and Education at University of Nevada, Las Vegas
MRI:内华达大学拉斯维加斯分校收购 GPU 集群用于多学科研究和教育
  • 批准号:
    2117941
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Dolly Sods GPU Cluster for Accelerated High-Performance Computing and Applications in Machine Learning and Artificial Intelligence in West Virginia
MRI:收购 Dolly Sods GPU 集群,以加速西弗吉尼亚州机器学习和人工智能的高性能计算和应用
  • 批准号:
    2117575
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High-Performance GPU Cluster for Research and Education
MRI:采购用于研究和教育的高性能 GPU 集群
  • 批准号:
    2018575
  • 财政年份:
    2020
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了