Using Micromechanical Experiments to Investigate the Rheology of Geologic Materials

利用微观力学实验研究地质材料的流变性

基本信息

  • 批准号:
    1726165
  • 负责人:
  • 金额:
    $ 44.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The physical and chemical properties of geologic materials control the development of Earth's surface and interior. Rheology is one particular branch of the study of material properties, which characterizes materials' ability to flow or deform viscously. The rheology of geologic materials is mainly responsible for controlling mantle convection, plate tectonics, and the formation of mountains. As such, rheology is directly related to numerous natural hazards such as earthquakes, volcanoes, and tsunami, as well as the production of natural resources. In this project, the investigators are using tools from materials science to understand the rheology of minerals that make up the bulk of Earth's crust and upper mantle. The data that result from this study will allow geoscientists to better understand how plate tectonics works, both on Earth and on other planetary bodies. The research project advances desired societal outcomes by full participation of women in STEM, public outreach to increase public scientific literacy and public engagement with STEM, development of a competitive STEM workforce through undergraduate and graduate student training, and laboratory improvement that enhances infrastructure for research.The objective of this project is to investigate the viscoplastic rheology of geological materials using micromechanical methods, including nanoindentation and micropillar compression testing. In a nanoindentation test, a sharp indenter is pushed into a specimen of interest with a precisely controlled amount of force, typically to depths of tens to hundreds of nanometers. A simultaneous record of the force and the displacement is used to assess the elastic and plastic response of the test specimen. In a micropillar compression test, a column of material with a diameter as small as a few hundred nanometers is fabricated using a focused ion beam. Using a nanoindentation instrument equipped with a cylindrical probe, uniaxial compression tests are performed to determine the mechanical response of the micropillar over a range of deformation conditions. In this project, micromechanical deformation experiments will be performed at low to moderate temperatures (T = -10 to 600 degrees C) on oriented single crystals of quartz, plagioclase feldspar, orthopyroxene, and olivine. Data from these experiments will be used to constrain the rheology of minerals under conditions where the lithosphere is strong and low-temperature plasticity is predicted to be the dominant deformation mechanism. The effects of rheological anisotropy will be assessed using the same micromechanical methods. Experimental results will be complemented by high resolution aberration-corrected scanning transmission electron microscope imaging and electron energy loss spectroscopy to provide insight into the atomic-scale structure and chemistry of crystalline defects introduced by deformation.
地质物质的物理和化学性质控制着地球表面和内部的发展。流变学是材料性质研究的一个特殊的分支,它表征了材料的流动或粘性变形的能力。地质物质的流变性主要控制地幔对流、板块构造和山脉的形成。因此,流变学与许多自然灾害(如地震、火山和海啸)以及自然资源的生产直接相关。在这个项目中,研究人员正在使用材料科学的工具来了解构成地壳和上地幔大部分的矿物的流变学。从这项研究中获得的数据将使地球科学家能够更好地了解板块构造在地球和其他行星上的作用方式。该研究项目通过妇女充分参与STEM,通过公众宣传提高公众科学素养和公众参与STEM,通过本科生和研究生培训培养有竞争力的STEM劳动力,以及改善实验室以加强研究基础设施,来推进预期的社会成果。该项目的目标是使用微力学方法研究地质材料的粘塑性流变学,包括纳米压痕和微柱压缩测试。在纳米压痕测试中,用精确控制的力将锋利的压头推入感兴趣的样品中,通常达到数十至数百纳米的深度。力和位移的同时记录用于评估测试样本的弹性和塑性响应。在微柱压缩测试中,使用聚焦离子束制造直径小至几百纳米的材料柱。使用配备有圆柱形探针的纳米压痕仪,进行单轴压缩测试,以确定在一系列变形条件下的微柱的机械响应。在本项目中,将在低温至中等温度(T = -10至600摄氏度)下对石英、斜长石、斜方辉石和橄榄石的定向单晶进行微机械变形实验。从这些实验中获得的数据将被用来约束岩石圈的条件下,矿物的流变学是强大的和低温塑性预计是占主导地位的变形机制。流变各向异性的影响将使用相同的微观力学方法进行评估。实验结果将得到高分辨率像差校正扫描透射电子显微镜成像和电子能量损失谱的补充,以提供对变形引入的晶体缺陷的原子尺度结构和化学的洞察。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-temperature rheology of calcite
方解石的低温流变学
  • DOI:
    10.1093/gji/ggz577
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Sly, Michael K.;Thind, Arashdeep S.;Mishra, Rohan;Flores, Katharine M.;Skemer, Philip
  • 通讯作者:
    Skemer, Philip
Amorphization and Plasticity of Olivine During Low‐Temperature Micropillar Deformation Experiments
  • DOI:
    10.1029/2019jb019242
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kelly Kranjc;A. Thind;A. Borisevich;Rohan Mishra;K. Flores;P. Skemer
  • 通讯作者:
    Kelly Kranjc;A. Thind;A. Borisevich;Rohan Mishra;K. Flores;P. Skemer
Viscoplastic Rheology of α‐Quartz Investigated by Nanoindentation
纳米压痕研究α石英的粘塑性流变学
  • DOI:
    10.1029/2021jb022229
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Strozewski, Benjamin;Sly, Michael K.;Flores, Katharine M.;Skemer, Philip
  • 通讯作者:
    Skemer, Philip
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Skemer其他文献

Spatially-variable carbonation reactions in polycrystalline olivine
  • DOI:
    10.1016/j.gca.2017.02.003
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rachel K. Wells;Wei Xiong;Erika Sesti;Jinlei Cui;Daniel Giammar;Philip Skemer;Sophia E. Hayes;Mark S. Conradi
  • 通讯作者:
    Mark S. Conradi
Rheology of hydrous minerals in the subduction multisystem
  • DOI:
    10.1016/j.epsl.2024.119171
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Charis M. Horn;Philip Skemer
  • 通讯作者:
    Philip Skemer

Philip Skemer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Skemer', 18)}}的其他基金

REU Site: Collaborative Research: Research Opportunities in Rock Deformation
REU 网站:合作研究:岩石变形的研究机会
  • 批准号:
    2050372
  • 财政年份:
    2022
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Standard Grant
Development of New Techniques for Rock Deformation Using the Large Volume Torsion Apparatus
大体积扭转装置岩石变形新技术开发
  • 批准号:
    2149427
  • 财政年份:
    2022
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153910
  • 财政年份:
    2022
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Continuing Grant
Acquisition of a Rock Deformation Apparatus to Study Rheology and Microstructure
购买岩石变形装置来研究流变学和微观结构
  • 批准号:
    1945763
  • 财政年份:
    2020
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Theoretical and Experimental Investigation of Grain Damage and the Formation of Plate Boundaries
合作研究:颗粒损伤和板块边界形成的理论和实验研究
  • 批准号:
    1853155
  • 财政年份:
    2019
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Standard Grant
Rheology and microstructural evolution of serpentine
蛇纹石的流变学和微观结构演化
  • 批准号:
    1848824
  • 财政年份:
    2019
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Standard Grant
EarthCube Data Infrastructure: Collaborative Proposal: A unified experimental-natural digital data system for analysis of rock microstructures
EarthCube数据基础设施:协作提案:用于分析岩石微观结构的统一实验自然数字数据系统
  • 批准号:
    1639641
  • 财政年份:
    2017
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Standard Grant
Conference on Experimental Studies of Subduction Zone Processes
俯冲带过程实验研究会议
  • 批准号:
    1757791
  • 财政年份:
    2017
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Standard Grant
Early Career: Development of a New Rock Deformation Apparatus for Investigating Earth's Upper Mantle
早期职业生涯:开发用于研究地球上地幔的新型岩石变形装置
  • 批准号:
    1360584
  • 财政年份:
    2014
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Standard Grant
CAREER: Microphysical evolution of highly sheared polymineralic rocks
职业:高剪切多矿物岩石的微物理演化
  • 批准号:
    1352306
  • 财政年份:
    2014
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Continuing Grant

相似海外基金

ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Research Grant
Replicating the cartilage micromechanical environment
复制软骨微机械环境
  • 批准号:
    DP240102160
  • 财政年份:
    2024
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Discovery Projects
Cochlear micromechanical mechanisms underlying psychoacoustic phenomena
心理声学现象背后的耳蜗微机械机制
  • 批准号:
    10715565
  • 财政年份:
    2023
  • 资助金额:
    $ 44.74万
  • 项目类别:
Elucidation of mechanisms underlying mechanical stimulus perception and Ca2+ propagation by micromechanical stimulation in living cells
阐明活细胞中微机械刺激机械刺激感知和 Ca2+ 传播的机制
  • 批准号:
    23K18133
  • 财政年份:
    2023
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Observations and Micromechanical Modeling of the Behavior of Snow/Ice Lenses Under Load in Order to Understand Avalanche Nucleation
为了了解雪崩成核,对雪/冰透镜在负载下的行为进行观察和微机械建模
  • 批准号:
    2227842
  • 财政年份:
    2023
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Standard Grant
CAREER: Fundamentals of Modeling Deformation Twinning in Polycrystalline Materials Driven by Diffraction-Based Micromechanical Data
职业:基于衍射的微机械数据驱动的多晶材料变形孪生建模基础
  • 批准号:
    2143808
  • 财政年份:
    2022
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Continuing Grant
Multimodal and Multiscale-driven Quantification of Micromechanical Metrics for Location-specific Fatigue Microcracking
特定位置疲劳微裂纹的多模态和多尺度驱动的微机械指标量化
  • 批准号:
    2152369
  • 财政年份:
    2022
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Continuing Grant
Reconstruction of three-dimensional organ of Corti micromechanical motion patterns via optical coherence tomography
光学相干断层扫描重建三维Corti器官微机械运动模式
  • 批准号:
    10533408
  • 财政年份:
    2022
  • 资助金额:
    $ 44.74万
  • 项目类别:
Towards a Micromechanical Damage Model for Lightweight Materials in Vehicle Crash
车辆碰撞中轻质材料的微机械损伤模型
  • 批准号:
    RGPIN-2017-04716
  • 财政年份:
    2022
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Discovery Grants Program - Individual
PhD Studentship in Micromechanical Modelling of Energetic Crystals for Estimating the Thermomechanical Response at High Strain Rates
含能晶体微机械建模博士生,用于估计高应变率下的热机械响应
  • 批准号:
    2740323
  • 财政年份:
    2022
  • 资助金额:
    $ 44.74万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了