Design of Experiments with Dynamic Responses
动态响应实验设计
基本信息
- 批准号:1726445
- 负责人:
- 金额:$ 31.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many engineered systems, such as those in the automotive and chemical industries, have dynamic performance or system outputs. The overall performance of such systems cannot be captured by a single number, but is instead represented by a response profile over time. Conducting experiments on these systems is costly and time-consuming; as a result, improving system performance through experimentation is difficult. This project will overcome these challenges through novel experimental design methodologies for engineered systems with dynamic outputs. The project is expected to impact a broad range of engineering applications. The academic research team will work closely with industrial partners to ensure applicability to real life settings.The research objective of this project is to improve experimental design methods for systems with dynamic response. The project will make advances in (1) dynamic response modeling, (2) optimal experimental designs, and (3) computational algorithm development. A novel hierarchical mix effect modeling approach will capture both the dynamic behavior of response variables and the effects of experimental factors. At the experimental design stage, the optimal sampling locations of the spectrum variables and design points in the experimental factor space will be investigated. Finally, fast computer algorithms that take advantage of the properties of B-spline basis function and the patterns in design matrices will be developed.
许多工程系统,如汽车和化学工业中的系统,具有动态性能或系统输出。这种系统的整体性能不能用一个数字来表示,而是用一段时间内的响应曲线来表示。在这些系统上进行实验是昂贵且耗时的;因此,通过实验来改善系统性能是困难的。该项目将通过新的实验设计方法来克服这些挑战,为工程系统的动态输出。该项目预计将影响广泛的工程应用。学术研究团队将与工业合作伙伴密切合作,以确保适用于真实的生活环境。本项目的研究目标是改进具有动态响应的系统的实验设计方法。该项目将在(1)动态响应建模,(2)最佳实验设计和(3)计算算法开发方面取得进展。一种新的分层混合效应建模方法将捕获响应变量的动态行为和实验因素的影响。在实验设计阶段,将研究光谱变量和设计点在实验因子空间中的最佳采样位置。最后,利用B样条基函数的性质和设计矩阵中的模式,将开发快速计算机算法。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boost-R: Gradient boosted trees for recurrence data
Boost-R:用于重复数据的梯度提升树
- DOI:10.1080/00224065.2021.1948373
- 发表时间:2021
- 期刊:
- 影响因子:2.5
- 作者:Liu, Xiao;Pan, Rong
- 通讯作者:Pan, Rong
Design optimal sampling plans for functional regression models
为函数回归模型设计最佳抽样计划
- DOI:10.1016/j.csda.2020.106925
- 发表时间:2020
- 期刊:
- 影响因子:1.8
- 作者:Rha, Hyungmin;Kao, Ming-Hung;Pan, Rong
- 通讯作者:Pan, Rong
Copula-based reliability analysis of degrading systems with dependent failures
- DOI:10.1016/j.ress.2019.106618
- 发表时间:2020-01-01
- 期刊:
- 影响因子:8.1
- 作者:Fang, Guanqi;Pan, Rong;Hong, Yili
- 通讯作者:Hong, Yili
On designing experiments for a dynamic response modeled by regression splines
关于设计由回归样条建模的动态响应的实验
- DOI:10.1002/asmb.2490
- 发表时间:2020
- 期刊:
- 影响因子:1.4
- 作者:Pan, Rong;Saleh, Moein
- 通讯作者:Saleh, Moein
Bagging-enhanced sampling schedule for functional quadratic regression
用于函数二次回归的套袋增强采样方案
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0.6
- 作者:Rha, H;Kao, M.-H.;Pan, R.
- 通讯作者:Pan, R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Pan其他文献
Determination of the sizes of optimal (m, n, k, \lambda, k-1) -OOSPCs with \lambda=k-1, k
确定最优 (m, n, k, lambda, k-1) -OOSPC 的大小,其中 lambda=k-1, k
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0.8
- 作者:
Rong Pan;Yanxun Chang - 通讯作者:
Yanxun Chang
Swoogle: Searching for Knowledge on the Semantic Web
Swoogle:在语义网上搜索知识
- DOI:
10.13016/m2g44hv47 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Timothy W. Finin;Li Ding;Rong Pan;A. Joshi;Pranam Kolari;Akshay Java;Yun Peng - 通讯作者:
Yun Peng
A context-enhanced sentence representation learning method for close domains with topic modeling
- DOI:
https://doi.org/10.1016/j.ins.2022.05.113 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Shuangyin Li;Weiwei Chen;Yu Zhang;Gansen Zhao;Rong Pan;Zhenhua Huang;Yong Tang - 通讯作者:
Yong Tang
M-Eco Adaptive Tuning and Personalization (D5.3)
M-Eco 自适应调整和个性化 (D5.3)
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Martin Leginus;Peter Dolog;F. Durão;Rong Pan;Ernesto Diaz - 通讯作者:
Ernesto Diaz
Inverse Gaussian processes with correlated random effects for multivariate degradation modeling
- DOI:
http://doi.org/10.1016/j.ejor.2021.10.049 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Guanqi Fang;Rong Pan;Yukun Wang - 通讯作者:
Yukun Wang
Rong Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Pan', 18)}}的其他基金
Collaborative Research: Quantitative Reliability Prediction in Early Design Stages
合作研究:早期设计阶段的定量可靠性预测
- 批准号:
1301075 - 财政年份:2013
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
Collaborative Research: Efficient Experimentation for Product and Process Reliability Improvement
协作研究:提高产品和工艺可靠性的有效实验
- 批准号:
0928746 - 财政年份:2009
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
Modeling and Analysis of Profiled Reliability Tests Using Computation-Intensive Statistical Methods
使用计算密集型统计方法对概要可靠性测试进行建模和分析
- 批准号:
0600586 - 财政年份:2006
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
Modeling and Analysis of Profiled Reliability Tests Using Computation-Intensive Statistical Methods
使用计算密集型统计方法对概要可靠性测试进行建模和分析
- 批准号:
0654417 - 财政年份:2006
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Enable Next-Generation Solid-State Batteries via Dynamic Modeling and Control: Theory and Experiments
RII Track-4:NSF:通过动态建模和控制实现下一代固态电池:理论和实验
- 批准号:
2327327 - 财政年份:2024
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
Probabilistic deep learning models and integrated biological experiments for analyzing dynamic and heterogeneous microbiomes
用于分析动态和异质微生物组的概率深度学习模型和集成生物实验
- 批准号:
10622713 - 财政年份:2023
- 资助金额:
$ 31.46万 - 项目类别:
Parametric Resonance and Stochastic Dynamic Stability of Structures: Theory, Experiments, and Applications
结构的参数共振和随机动态稳定性:理论、实验和应用
- 批准号:
RGPIN-2019-06069 - 财政年份:2022
- 资助金额:
$ 31.46万 - 项目类别:
Discovery Grants Program - Individual
Exploiting High Repetition Rate Experiments In Dynamic High-Pressure Physics.
在动态高压物理中利用高重复率实验。
- 批准号:
2742114 - 财政年份:2022
- 资助金额:
$ 31.46万 - 项目类别:
Studentship
Design of Dynamic experiments with Functional Data.
使用功能数据设计动态实验。
- 批准号:
2607359 - 财政年份:2021
- 资助金额:
$ 31.46万 - 项目类别:
Studentship
Probing the Evolution of Granular Microstructures during Dynamic Annealing via Integrated Three-Dimensional Experiments and Simulations
通过集成三维实验和模拟探讨动态退火过程中颗粒微观结构的演变
- 批准号:
2104786 - 财政年份:2021
- 资助金额:
$ 31.46万 - 项目类别:
Continuing Grant
Parametric Resonance and Stochastic Dynamic Stability of Structures: Theory, Experiments, and Applications
结构的参数共振和随机动态稳定性:理论、实验和应用
- 批准号:
RGPIN-2019-06069 - 财政年份:2021
- 资助金额:
$ 31.46万 - 项目类别:
Discovery Grants Program - Individual
Parametric Resonance and Stochastic Dynamic Stability of Structures: Theory, Experiments, and Applications
结构的参数共振和随机动态稳定性:理论、实验和应用
- 批准号:
RGPIN-2019-06069 - 财政年份:2020
- 资助金额:
$ 31.46万 - 项目类别:
Discovery Grants Program - Individual
strain localization promoted by dynamic recrystallization of orthopyroxene studied by high-pressure deformation experiments
高压变形实验研究斜方辉石动态再结晶促进的应变局部化
- 批准号:
19K14816 - 财政年份:2019
- 资助金额:
$ 31.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Coordinated In-situ Dynamic Experiments and Atomistic Modeling of Surface Segregation in Alloys
合作研究:合金表面偏析的协调原位动态实验和原子建模
- 批准号:
1905422 - 财政年份:2019
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant