Modeling and Analysis of Profiled Reliability Tests Using Computation-Intensive Statistical Methods
使用计算密集型统计方法对概要可靠性测试进行建模和分析
基本信息
- 批准号:0654417
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant provides funding for the development of an innovative research approach to modeling and analysis of complicated engineering reliability problems. The project consists of four research and education tasks - 1) developing new statistical models that can extend reliability analysis to multiple-stress profiled reliability testing data; 2) fusing reliability information from various resources, including mechanistic model, expert opinions, and field failure data, into reliability estimation and prediction using Bayesian methods and their associated computational tools; 3) demonstrating the advantages of using generalized linear models and Bayesian analysis methods for the design and optimization of reliability tests; 4) engaging science and engineering students, particularly Hispanics students, in active learning and using probabilistic and statistical models in real-world applications.If successful, this project will advance the knowledge of statistical reliability analysis of a complex testing plan and multiple failure modes, develop a data analysis method which will eliminate many unrealistic assumptions and incorporate prior engineering knowledge into reliability analysis, and promote a broader understanding and appreciation of computational statistics methods among quality and reliability researchers and industrial practitioners. The methodology developed in this research can apply to the automobile industry, electronic industry, semiconductor industry, and many other applications in the fields beyond engineering, such as medical and biological sciences. In addition, this project will significantly enhance the basic science and engineering education in a major Hispanics-serving university, foster a collaborative research environment across the disciplines of industrial engineering and mathematical science, and benefit a minority student group who is traditionally underrepresented in science and engineering careers.
该补助金为开发一种创新的研究方法提供资金,以建模和分析复杂的工程可靠性问题。 该项目包括四个研究和教育任务:1)开发新的统计模型,可以将可靠性分析扩展到多应力分布的可靠性试验数据; 2)融合来自各种资源的可靠性信息,包括机械模型,专家意见和现场故障数据,使用贝叶斯方法及其相关的计算工具进行可靠性估计和预测; 3)论证了广义线性模型和贝叶斯分析方法在可靠性试验设计和优化中的优越性; 4)让科学和工程专业的学生,特别是西班牙裔学生,参与主动学习,并在现实世界的应用中使用概率和统计模型。如果成功,该项目将提高对复杂测试计划和多种失效模式的统计可靠性分析的知识,开发一种数据分析方法,该方法将消除许多不切实际的假设,并将先前的工程知识纳入可靠性分析,并促进质量和可靠性研究人员和行业从业人员对计算统计方法的更广泛理解和赞赏。在这项研究中开发的方法可以应用于汽车工业,电子工业,半导体工业,以及许多其他领域的应用超出了工程,如医学和生物科学。此外,该项目将大大提高基础科学和工程教育在一个主要的西班牙裔服务的大学,促进跨学科的工业工程和数学科学的合作研究环境,并有利于少数学生群体谁是传统上代表性不足的科学和工程事业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Pan其他文献
Determination of the sizes of optimal (m, n, k, \lambda, k-1) -OOSPCs with \lambda=k-1, k
确定最优 (m, n, k, lambda, k-1) -OOSPC 的大小,其中 lambda=k-1, k
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0.8
- 作者:
Rong Pan;Yanxun Chang - 通讯作者:
Yanxun Chang
Swoogle: Searching for Knowledge on the Semantic Web
Swoogle:在语义网上搜索知识
- DOI:
10.13016/m2g44hv47 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Timothy W. Finin;Li Ding;Rong Pan;A. Joshi;Pranam Kolari;Akshay Java;Yun Peng - 通讯作者:
Yun Peng
A context-enhanced sentence representation learning method for close domains with topic modeling
- DOI:
https://doi.org/10.1016/j.ins.2022.05.113 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Shuangyin Li;Weiwei Chen;Yu Zhang;Gansen Zhao;Rong Pan;Zhenhua Huang;Yong Tang - 通讯作者:
Yong Tang
M-Eco Adaptive Tuning and Personalization (D5.3)
M-Eco 自适应调整和个性化 (D5.3)
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Martin Leginus;Peter Dolog;F. Durão;Rong Pan;Ernesto Diaz - 通讯作者:
Ernesto Diaz
Inverse Gaussian processes with correlated random effects for multivariate degradation modeling
- DOI:
http://doi.org/10.1016/j.ejor.2021.10.049 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Guanqi Fang;Rong Pan;Yukun Wang - 通讯作者:
Yukun Wang
Rong Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Pan', 18)}}的其他基金
Design of Experiments with Dynamic Responses
动态响应实验设计
- 批准号:
1726445 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Quantitative Reliability Prediction in Early Design Stages
合作研究:早期设计阶段的定量可靠性预测
- 批准号:
1301075 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Efficient Experimentation for Product and Process Reliability Improvement
协作研究:提高产品和工艺可靠性的有效实验
- 批准号:
0928746 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Modeling and Analysis of Profiled Reliability Tests Using Computation-Intensive Statistical Methods
使用计算密集型统计方法对概要可靠性测试进行建模和分析
- 批准号:
0600586 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
- 批准号:
2406732 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant