Collaborative Research: Learning to Use Essential Tools and Resources for Data Science with a Cloud-Based Virtual Environment
协作研究:学习在基于云的虚拟环境中使用数据科学的基本工具和资源
基本信息
- 批准号:1726816
- 负责人:
- 金额:$ 36.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Business, government, and science researchers are producing massive amounts of complex data. The availability of these huge datasets fuels a need for both data-driven analytics and a 21st-century workforce that can use data analytics to answer questions and solve problems. This collaborative project will develop a cloud-based virtual platform to train undergraduate students how to use software tools essential to data science. The platform will make state-of-the-art computing resources, including both powerful data analysis tools and parallel hardware systems, more accessible to students and faculty, even if they are at institutions without locally available high-power computing systems. The project aims to help students develop critical workforce skills in data science. The project will also provide professional development opportunities to help faculty use data-analysis tools in their courses and research.The goal of this project is to develop a cloud-based infrastructure in the form of a virtual science platform with related training modules. First, it will leverage an existing framework for building web applications to provide broad access to open source, high performance computing resources at the collaborating universities and through the NSF Extreme Science and Engineering Discovery Environment. The cloud-based platform will support both training of students and collaboration among students. Second, the project will produce a data science curriculum targeted to undergraduate students. The curriculum will also be suitable for graduate students, post-doctoral researchers, and information technology professionals interested in data science. The project will deliver a full set of interactive documents and video tutorials on using and configuring the platform. The educational activities will use graphical, interactive, simulation-based, and experiential learning components to teach data science concepts and computing skills, accessed through the cloud-based platform. Through the platform, students will have the opportunity to learn how to use powerful data science resources, enabling their potential to transform data-rich computer science and engineering problems into practical solutions. Third, the project will deliver professional development for faculty at multiple institutions, to help them learn how to use data science in their classrooms and their own research. This project addresses national interests by making state-of-the-art computing resources more accessible to students, supporting their development of critical workforce skills.
企业、政府和科学研究人员正在产生大量复杂的数据。这些庞大数据集的可用性推动了对数据驱动分析和21世纪劳动力的需求,这些劳动力可以使用数据分析来回答问题和解决问题。该合作项目将开发一个基于云的虚拟平台,培训本科生如何使用数据科学所必需的软件工具。该平台将使最先进的计算资源,包括强大的数据分析工具和并行硬件系统,更容易为学生和教师使用,即使他们所在的机构没有本地可用的高性能计算系统。该项目旨在帮助学生培养数据科学方面的关键劳动力技能。该项目还将提供专业发展机会,帮助教师在他们的课程和研究中使用数据分析工具。该项目的目标是以虚拟科学平台的形式开发基于云的基础设施,并提供相关的培训模块。首先,它将利用现有的框架来构建web应用程序,通过NSF极端科学与工程发现环境,为合作大学提供对开源、高性能计算资源的广泛访问。这个基于云的平台将支持学生的培训和学生之间的协作。其次,该项目将制作一套针对本科生的数据科学课程。该课程也适合对数据科学感兴趣的研究生、博士后研究人员和信息技术专业人员。该项目将提供一整套关于使用和配置该平台的交互式文档和视频教程。教育活动将使用图形、交互式、基于模拟和体验式学习组件来教授数据科学概念和计算技能,并通过基于云的平台进行访问。通过这个平台,学生将有机会学习如何使用强大的数据科学资源,发挥他们的潜力,将数据丰富的计算机科学和工程问题转化为实际的解决方案。第三,该项目将为多个机构的教师提供专业发展,帮助他们学习如何在课堂和自己的研究中使用数据科学。该项目通过使学生更容易获得最先进的计算资源,支持他们发展关键的工作技能,从而满足国家利益。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Study of Spoken Audio Processing using Machine Learning for Libraries, Archives and Museums (LAM)
- DOI:10.1109/bigdata50022.2020.9378438
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Weijia Xu;M. Esteva;Peter Cui;E. Castillo;Kewen Wang;H. R. Hopkins;Tanya E. Clement;Aaron Choate;Ruizhu Huang
- 通讯作者:Weijia Xu;M. Esteva;Peter Cui;E. Castillo;Kewen Wang;H. R. Hopkins;Tanya E. Clement;Aaron Choate;Ruizhu Huang
Authentication with User Driven Web Application for Accessing Remote Resources
- DOI:10.1145/3219104.3229290
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Yige Wang;Ruizhu Huang;Weijia Xu
- 通讯作者:Yige Wang;Ruizhu Huang;Weijia Xu
Towards Enabling Education as a Service on High Performance Computing Resource
实现教育即高性能计算资源服务
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Xu, Weijia;Zhang, Hui
- 通讯作者:Zhang, Hui
Enabling User Driven Web Applications on Remote Computing Resource
在远程计算资源上启用用户驱动的 Web 应用程序
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Xu, Weijia;Huang, Ruizhu;Wang, Yige
- 通讯作者:Wang, Yige
Enabling User Driven Big Data Application on Remote Computing Resources
- DOI:10.1109/bigdata.2018.8622006
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Weijia Xu;Ruizhu Huang;Yige Wang
- 通讯作者:Weijia Xu;Ruizhu Huang;Yige Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weijia Xu其他文献
A web interface for XALT log data analysis
用于 XALT 日志数据分析的 Web 界面
- DOI:
10.1145/2949550.2949560 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ruizhu Huang;Weijia Xu;R. McLay - 通讯作者:
R. McLay
FlowGate: towards extensible and scalable web-based flow cytometry data analysis
FlowGate:实现可扩展和可扩展的基于网络的流式细胞术数据分析
- DOI:
10.1145/2792745.2792750 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Y. Qian;Hyunsoo Kim;Shweta Purawat;Jianwu Wang;Rick Stanton;Alexandra J. Lee;Weijia Xu;I. Altintas;R. Sinkovits;R. Scheuermann - 通讯作者:
R. Scheuermann
BOIMPY-Based NIR-II Fluorophore with High Brightness and Long Absorption beyond 1000 nm for In Vivo Bioimaging: Synergistic Steric Regulation Strategy
基于 BOIMPY 的 NIR-II 荧光团,具有高亮度和超过 1000 nm 的长吸收率,适用于体内生物成像:协同空间调节策略
- DOI:
10.1021/acsnano.2c08619 - 发表时间:
2022 - 期刊:
- 影响因子:17.1
- 作者:
Senyao Liu;Weijia Xu;Xiaoxin Li;Dai-Wen Pang;Hu Xiong - 通讯作者:
Hu Xiong
Empowering R with High Performance Computing Resources for Big Data Analytics
为 R 提供高性能计算资源以进行大数据分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Weijia Xu;Ruizhu Huang;Hui Zhang;Yaakoub El;David Walling - 通讯作者:
David Walling
Data curation with a focus on reuse
注重重用的数据管理
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
M. Esteva;Sandra Sweat;R. McLay;Weijia Xu;Sivakumar Kulasekaran - 通讯作者:
Sivakumar Kulasekaran
Weijia Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
- 批准号:
2330154 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant