DMREF: Collaborative Research: Predictive Modeling of Polymer-Derived Ceramics: Discovering Methods for the Design and Fabrication of Complex Disordered Solids

DMREF:协作研究:聚合物衍生陶瓷的预测建模:探索复杂无序固体的设计和制造方法

基本信息

  • 批准号:
    1729086
  • 负责人:
  • 金额:
    $ 29.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Non-technical Description: In the broader context of the materials-by-design grand challenge, this project will focus on developing a novel methodology for accurate design and fabrication of complex disordered solids using a combination of advanced computational and experimental techniques. Complex disordered solids are non-crystalline materials for which the fundamental building blocks are typically molecules or molecule fragments, and therefore they have great potential for tunable structure and properties for various applications of great scientific and technological importance. The key feature of our novel approach is to develop an efficient iterative loop that involves simulating the atomic structure of complex disordered solids, subsequently characterizing the resultant structures/properties, and sending the information back to fabrication conditions for further optimization. This new development is significant because it will demonstrate a computation-based design principle for systematically obtaining the growth parameters needed to make complex disordered materials with targeted properties. Ultimately, that ability can be directed to produce materials that are optimized for particular applications. It is envisioned that the results of this project will be transferrable to a wide range of complex disordered material types, growth methods, and structural/functional properties. The complete system is designated as the amorphous materials designer (AMD) program. During the construction of the AMD, students from high school up though Ph.D. graduate school will be trained by the investigators in all aspects of the research including materials simulation, fabrication, and characterization using advanced state-of-the-art methods.Technical Description: The research will focus on developing an ab initio molecular dynamics (AIMD) and hybrid reverse Monte Carlo (HRMC) simulation algorithm, augmented by ab initio based energy constraints, that couples with experimental input and feedback, using a series of thin-film amorphous preceramic polymers (a-BC:H, a-SiBCN:H, and a-SiCO:H) as suitably complex and technologically relevant case studies. The unique utility of modern solid-state nuclear magnetic resonance techniques to obtain specific bonding and connectivity information and the sensitive medium-range order information available from fluctuation electron microscopy - a specialized technique based on transmission electron microscopy - will be combined with neutron diffraction and more routine physical and electronic structure characterization methods to provide input and constraints for the simulations. The HRMC modeling efforts will be optimized via particle swarm optimization and subsequently used to train an artificial neural network (ANN) that will predictively link the parameters used to simulate a desired material with the growth parameters needed to fabricate said material. Consequently, the investigators expect to substantially advance the state of the art and surmount traditional challenges associated with (1) identifying non-global potential energy minima for materials produced under non-thermodynamic conditions and (2) aligning simulation and growth process timescales. This effort will benefit technology and society by advancing the science of design of complex disordered solids. The novelty of the effort lies in developing the algorithms and rule-sets that will tie together growth, characterization, and simulation, as well as in developing strategies for mapping (not necessarily reproducing) fabrication conditions and desired properties, and it is this that takes the effort from evolutionary to potentially revolutionary. The PIs also plan to release the AMD program as open source and build a user community around it by ensuring that interested researchers are able to contribute to the AMD codebase. This will allow a wider growth of the project. This aspect is of special interest to the software cluster in the Office of Advanced Cyberinfrastructure, which has provided co-funding for this award.
非技术描述:在材料设计大挑战的更广泛背景下,该项目将专注于开发一种新的方法,使用先进的计算和实验技术相结合,精确设计和制造复杂的无序固体。复杂无序固体是非晶体材料,其基本构建块通常是分子或分子片段,因此它们具有可调结构和性质的巨大潜力,用于具有重大科学和技术重要性的各种应用。我们的新方法的关键特征是开发一个有效的迭代循环,该循环涉及模拟复杂无序固体的原子结构,随后表征所得结构/性质,并将信息发送回制造条件以进行进一步优化。这一新进展意义重大,因为它将展示一种基于计算的设计原理,用于系统地获得制造具有目标特性的复杂无序材料所需的生长参数。最终,这种能力可以用于生产针对特定应用优化的材料。据设想,该项目的结果将可转移到广泛的复杂无序材料类型,生长方法和结构/功能特性。完整的系统被指定为非晶材料设计师(AMD)计划。在AMD的建设过程中,从高中到博士的学生。研究生院将接受研究人员在研究的各个方面的培训,包括材料模拟,制造和使用先进的最先进的方法表征。技术描述:该研究将侧重于开发一种从头算分子动力学(AIMD)和混合反向蒙特卡罗(HRMC)模拟算法,通过基于从头算的能量约束增强,与实验输入和反馈耦合,使用一系列薄膜非晶陶瓷预制体聚合物(a-BC:H、a-SiBCN:H和a-SiCO:H)作为适当复杂和技术相关的案例研究。现代固态核磁共振技术的独特效用,以获得特定的键合和连接信息和敏感的中程有序信息,可从波动电子显微镜-一种专门的技术基础上的透射电子显微镜-将结合中子衍射和更常规的物理和电子结构表征方法,提供输入和约束的模拟。HRMC建模工作将通过粒子群优化进行优化,并随后用于训练人工神经网络(ANN),该人工神经网络将预测性地将用于模拟所需材料的参数与制造所述材料所需的生长参数联系起来。因此,研究人员希望大幅推进最新技术水平,并克服与以下方面相关的传统挑战:(1)确定在非热力学条件下生产的材料的非全局势能最小值,以及(2)调整模拟和生长过程时间尺度。这一努力将有利于技术和社会,通过推进复杂无序固体的设计科学。这项工作的新奇在于开发了将生长、表征和模拟联系在一起的算法和规则集,以及开发了映射(不一定是复制)制造条件和所需特性的策略,正是这一点使这项工作从进化到潜在的革命。PI还计划将AMD程序作为开源发布,并通过确保感兴趣的研究人员能够为AMD代码库做出贡献来围绕它建立一个用户社区。这将使该项目得到更广泛的发展。高级网络基础设施办公室的软件集群对此特别感兴趣,该办公室为该奖项提供了共同资助。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoscale Structure-Property Relationship in Amorphous Hydrogenated Boron Carbide for Low- k Dielectric Applications
用于低 k 介电应用的非晶态氢化碳化硼的纳米级结构-性能关系
  • DOI:
    10.1017/s1431927617008091
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Im, Soohyun;Paquette, Michelle M.;Belhadj-Larbi, Mohammed;Rulis, Paul;Sakidja, Ridwan;Hwang, Jinwoo
  • 通讯作者:
    Hwang, Jinwoo
Direct Determination of Medium Range Ordering in Amorphous Hydrogenated Boron Carbide for Low-k Dielectric Applications
直接测定低 k 电介质应用中非晶态氢化碳化硼的中程有序度
  • DOI:
    10.1017/s143192762001394x
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Gharacheh, Mehrdad Abbasi;Im, Soohyun;Johnson, Jared;Ortiz, Gabriel Calderon;Zhu, Menglin;Oyler, Nathan;Paquette, Michelle;Rulis, Paul;Sakidja, Ridwan;Hwang, Jinwoo
  • 通讯作者:
    Hwang, Jinwoo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinwoo Hwang其他文献

Identifying Atomic Reconstruction at Complex Oxide Interfaces Using Quantitative STEM
使用定量 STEM 识别复杂氧化物界面处的原子重构
  • DOI:
    10.1017/s1431927615006972
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Jared M. Johnson;Justin K. Thompson;S. S. Seo;Jinwoo Hwang
  • 通讯作者:
    Jinwoo Hwang
Atomic scale investigation of chemical heterogeneity in β-(AlxGa1−x)2O3 films using atom probe tomography
使用原子探针断层扫描对 β-(AlxGa1−x)2O3 薄膜中的化学异质性进行原子尺度研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4
  • 作者:
    B. Mazumder;Jith Sarker;Yuewei Zhang;Jared M. Johnson;Menglin Zhu;S. Rajan;Jinwoo Hwang
  • 通讯作者:
    Jinwoo Hwang
FEMSIM + HRMC: Simulation of and structural refinement using fluctuation electron microscopy for amorphous materials
FEMSIM HRMC:使用波动电子显微镜对非晶材料进行模拟和结构细化
  • DOI:
    10.1016/j.cpc.2016.12.006
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Maldonis;Jinwoo Hwang;P. Voyles
  • 通讯作者:
    P. Voyles
Tunable magnons of an antiferromagnetic Mott insulator via interfacial metal-insulator transitions
通过界面金属-绝缘体转变实现反铁磁莫特绝缘体的可调磁振子
  • DOI:
    10.1038/s41467-025-58922-z
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Sujan Shrestha;Maryam Souri;Christopher J. Dietl;Ekaterina M. Pärschke;Maximilian Krautloher;Gabriel A. Calderon Ortiz;Matteo Minola;Xiatong Shi;Alexander V. Boris;Jinwoo Hwang;Giniyat Khaliullin;Gang Cao;Bernhard Keimer;Jong-Woo Kim;Jungho Kim;Ambrose Seo
  • 通讯作者:
    Ambrose Seo
Variable-angle high-angle annular dark-field imaging: application to three-dimensional dopant atom profiling
可变角高角环形暗场成像:在三维掺杂原子轮廓分析中的应用
  • DOI:
    10.1038/srep12419
  • 发表时间:
    2015-07-24
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Jack Y. Zhang;Jinwoo Hwang;Brandon J. Isaac;Susanne Stemmer
  • 通讯作者:
    Susanne Stemmer

Jinwoo Hwang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jinwoo Hwang', 18)}}的其他基金

Collaborative Research: Experimentally Informed Modeling of Structural Heterogeneity and Deformation of Metallic Glasses
合作研究:金属玻璃结构异质性和变形的实验知情建模
  • 批准号:
    2104724
  • 财政年份:
    2021
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Standard Grant
CAREER: Novel Debye Waller Thermometry of Oxide Interfaces for Reducing Thermal Interface Resistance
职业:用于降低热界面电阻的新型氧化物界面德拜沃勒测温法
  • 批准号:
    1847964
  • 财政年份:
    2019
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Continuing Grant
Correlating structural heterogeneity to deformation in metallic glasses
将金属玻璃的结构异质性与变形相关联
  • 批准号:
    1709290
  • 财政年份:
    2017
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了