DMREF: Computational Design of Next-generation Nanoscale DNA-based Materials

DMREF:下一代纳米级 DNA 材料的计算设计

基本信息

  • 批准号:
    1729397
  • 负责人:
  • 金额:
    $ 160万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Biological organisms utilize DNA to encode the synthesis of a remarkably diverse variety of materials ranging from photosynthetic plants to pearly substances from mollusks to silk from spiders and worms. In recent years, it has become possible to utilize DNA itself as a construction material and to turn it into a wide range of materials not readily produced from naturally evolved organisms. To this end, this research project focuses on identifying computational design rules that will accelerate the discovery of DNA-based, structured materials possessing unusual chemical, mechanical, and optical properties. The synthetic DNA materials are being designed with open pore configurations suitable for further modification with proteins, enzymes, chromophores, metallic particles, and other organic and inorganic materials. These combinations offer a next-generation platform for the creation of complex multi-scale DNA-based materials for diverse chemical, biological, mechanical, optical, and sensing applications. The predictive software tools developed in the course of the project are being made broadly accessible and open-sourced to facilitate engagement worldwide of researchers and practitioners in the custom design and synthesis of complex DNA-based materials. This research project aims to develop a generalized computational framework for the rational design of structured DNA-based materials of nearly arbitrary nanoscale geometric composition. Computational models of DNA-based self-assembly and structure are being validated experimentally in a highly iterative and integrative manner. Similar to unstructured and non-porous colloidal particles that have previously been organized rationally using DNA, structured DNA nanoparticles and single-stranded DNA tiles are being used to realize complex structured and porous 3-dimenional materials in infinite, extended lattices or finite, discrete nanoscale clusters. Utilization of purely synthetic, single-stranded tile oligos facilitates the realization of up to gigadalton-scale DNA-based materials with unique nanoscale addressability using sequence specification amenable to downstream functionalization with metallic nanoparticles, enzymes, or other functional moieties. Web-based dissemination of computational models is being done to make the results of this research project available worldwide. Software developed during the course of the project also is being made freely available, under an open source license, for further development and integration into other software packages by researchers worldwide. This broad dissemination of computational results facilitates the broader materials and nanotechnology communities to study this novel class of hierarchical DNA-based materials. For example, computational models could be used to perform in silico screens for target structural and functional properties, reducing significantly the time needed to deploy functional DNA-based materials for industrial applications.
生物有机体利用DNA编码合成各种各样的材料,从光合植物到软体动物的珍珠状物质,再到蜘蛛和蠕虫的丝。近年来,利用DNA本身作为建筑材料并将其转化为自然进化生物体不易产生的各种材料已经成为可能。为此,该研究项目的重点是确定计算设计规则,这些规则将加速发现具有不寻常化学,机械和光学特性的基于DNA的结构材料。合成DNA材料被设计成具有开孔结构,适合于用蛋白质、酶、发色团、金属颗粒和其他有机和无机材料进行进一步修饰。 这些组合为创建复杂的多尺度基于DNA的材料提供了下一代平台,用于各种化学,生物,机械,光学和传感应用。在项目过程中开发的预测软件工具正在广泛使用和开放源码,以促进世界各地的研究人员和从业人员参与复杂的DNA材料的定制设计和合成。该研究项目旨在开发一个通用的计算框架,用于合理设计几乎任意纳米级几何组成的结构化DNA基材料。 基于DNA的自组装和结构的计算模型正在以高度迭代和综合的方式进行实验验证。类似于先前已经使用DNA合理组织的非结构化和无孔胶体颗粒,结构化DNA纳米颗粒和单链DNA瓦片正在用于实现无限扩展晶格或有限离散纳米级簇中的复杂结构化和多孔3维材料。利用纯合成的单链寡核苷酸有助于实现高达千兆道尔顿规模的基于DNA的材料,其具有独特的纳米级可寻址性,使用序列规范,其适于用金属纳米颗粒、酶或其他功能部分进行下游功能化。目前正在通过网络传播计算模型,以便向全世界提供这一研究项目的成果。 在该项目过程中开发的软件也在开放源码许可证下免费提供,供世界各地的研究人员进一步开发和纳入其他软件包。计算结果的广泛传播促进了更广泛的材料和纳米技术社区研究这种新型的基于DNA的分层材料。例如,计算模型可用于对目标结构和功能特性进行计算机筛选,从而显著减少为工业应用部署功能性DNA基材料所需的时间。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Programming 2D Supramolecular Assemblies with Wireframe DNA Origami
使用线框 DNA 折纸对 2D 超分子组装体进行编程
Layered-Crossover Tiles with Precisely Tunable Angles for 2D and 3D DNA Crystal Engineering
Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches
  • DOI:
    10.1126/science.aaz7440
  • 发表时间:
    2020-05-22
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Sun, Wei;Shen, Jie;Yin, Peng
  • 通讯作者:
    Yin, Peng
Automated sequence design of 2D wireframe DNA origami with honeycomb edges
  • DOI:
    10.1038/s41467-019-13457-y
  • 发表时间:
    2019-11-28
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Jun, Hyungmin;Wang, Xiao;Bathe, Mark
  • 通讯作者:
    Bathe, Mark
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Bathe其他文献

Accelerated Subspace Iteration Method for Protein Normal Mode Analysis
  • DOI:
    10.1016/j.bpj.2008.12.2078
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reza Sharifi Sedeh;Mark Bathe;Klaus-Jürgen Bathe
  • 通讯作者:
    Klaus-Jürgen Bathe
Chromatin Architecture Reconstruction
  • DOI:
    10.1016/j.bpj.2011.11.2644
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Philipp M. Diesinger;Miriam Fritsche;Keyao Pan;Dieter Heermann;Mark Bathe
  • 通讯作者:
    Mark Bathe
Conformational Dynamics and Allostery of Supramolecular Protein Assemblies: from the Nuclear Pore Complex to GroEL
  • DOI:
    10.1016/j.bpj.2010.12.1163
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Do-Nyun Kim;Cong-Tri Nguyen;Mark Bathe
  • 通讯作者:
    Mark Bathe
F-Actin Mediated Chromosome Transport
  • DOI:
    10.1016/j.bpj.2011.11.1311
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Philipp M. Diesinger;Nilah Monnier M. Mori;Peter Lenart;Mark Bathe
  • 通讯作者:
    Mark Bathe
Probing F-actin Stability and Mechanics using Structure-Based Computational Modeling
  • DOI:
    10.1016/j.bpj.2010.12.1834
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Philip Bransford;Roger Kamm;Mark Bathe
  • 通讯作者:
    Mark Bathe

Mark Bathe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Bathe', 18)}}的其他基金

EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
  • 批准号:
    2240309
  • 财政年份:
    2023
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
AF Medium: DNA-based Data Storage and Computing Materials
AF Medium:基于DNA的数据存储和计算材料
  • 批准号:
    1956054
  • 财政年份:
    2020
  • 资助金额:
    $ 160万
  • 项目类别:
    Continuing Grant
Collaborative Research: Autonomous Computing Materials
合作研究:自主计算材料
  • 批准号:
    1940231
  • 财政年份:
    2019
  • 资助金额:
    $ 160万
  • 项目类别:
    Continuing Grant
RAISE-TAQS: Room-Temperature Quantum Sensing and Computation using DNA-based Excitonic Circuits
RAISE-TAQS:使用基于 DNA 的激子电路进行室温量子传感和计算
  • 批准号:
    1839155
  • 财政年份:
    2018
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Inferring the Physics of mRNA Trafficking in Neuronal Systems
推断神经系统中 mRNA 运输的物理原理
  • 批准号:
    1707999
  • 财政年份:
    2017
  • 资助金额:
    $ 160万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Top-down algorithmic design of structured nucleic acid assemblies
AF:中:协作研究:结构化核酸组装体的自上而下的算法设计
  • 批准号:
    1564025
  • 财政年份:
    2016
  • 资助金额:
    $ 160万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Algorithmic design principles for programmed DNA nanocages
EAGER:协作研究:编程 DNA 纳米笼的算法设计原理
  • 批准号:
    1547999
  • 财政年份:
    2015
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
DMREF: Computational Design Principles for Functional DNA-Based Materials
DMREF:功能性 DNA 材料的计算设计原则
  • 批准号:
    1334109
  • 财政年份:
    2014
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Inferring the Physics of Living Systems from Dynamic Light Microscopy Data
从动态光学显微镜数据推断生命系统的物理原理
  • 批准号:
    1305537
  • 财政年份:
    2014
  • 资助金额:
    $ 160万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
  • 批准号:
    2340356
  • 财政年份:
    2024
  • 资助金额:
    $ 160万
  • 项目类别:
    Continuing Grant
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
  • 批准号:
    10096988
  • 财政年份:
    2024
  • 资助金额:
    $ 160万
  • 项目类别:
    EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 160万
  • 项目类别:
    EU-Funded
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Computational design of frontier materials for sustainable technologies
可持续技术前沿材料的计算设计
  • 批准号:
    FL230100176
  • 财政年份:
    2024
  • 资助金额:
    $ 160万
  • 项目类别:
    Australian Laureate Fellowships
Computational Multi-Models Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings (M2DESCO)
计算多模型支持安全设计
  • 批准号:
    10110861
  • 财政年份:
    2024
  • 资助金额:
    $ 160万
  • 项目类别:
    EU-Funded
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329760
  • 财政年份:
    2024
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
CAREER: Computational Design of High-Performing V2O5 Cathodes for Zn-ion batteries
职业:锌离子电池高性能 V2O5 阴极的计算设计
  • 批准号:
    2339751
  • 财政年份:
    2024
  • 资助金额:
    $ 160万
  • 项目类别:
    Continuing Grant
CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
  • 批准号:
    2338804
  • 财政年份:
    2024
  • 资助金额:
    $ 160万
  • 项目类别:
    Continuing Grant
Richter - Advancing Construction Design Efficiency through computational analysis: Revolutionising Working Platforms within construction industry
Richter - 通过计算分析提高建筑设计效率:彻底改变建筑行业的工作平台
  • 批准号:
    10089025
  • 财政年份:
    2024
  • 资助金额:
    $ 160万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了