RAISE-TAQS: Room-Temperature Quantum Sensing and Computation using DNA-based Excitonic Circuits
RAISE-TAQS:使用基于 DNA 的激子电路进行室温量子传感和计算
基本信息
- 批准号:1839155
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Moore's Law, the well-known observation that the number of transistors in silicon-based integrated circuits and personal computing devices doubles approximately every year, has ended. A major challenge for the next decade is to identify viable alternatives to traditional, silicon-based computing. Such alternatives are needed to meet the ever-increasing worldwide computational demands in almost all areas of life. Quantum information processors may be one viable alternative to meet this demand. By taking advantage of quantum mechanical phenomena, the computational power of quantum computers may exceed by orders of magnitude that of conventional, silicon-based integrated circuits. However, to date quantum information processing is required to operate at ultra-cold temperatures in highly isolated and protected environments. No viable quantum information processing platform exists that functions at room temperature or in wet condition. If they did exist, such quantum systems could be used for tasks such as quantum-enhanced sensing. In this project, structured DNA circuits are used to construct quantum-based processing and sensing devices that operate at room temperature and in the liquid state. Foundational principles of DNA-based quantum sensing and signal processing devices are being established and applied to practical quantum information processing challenges to demonstrate viability of this revolutionary approach to address diverse societal computing needs. An interdisciplinary team of investigators from chemistry, biological engineering and materials science, and electrical engineering will pursue this transformative approach towards room-temperature information processors, and train the next-generation of interdisciplinary quantum computer scientists and engineers Classical silicon-based computing has reached its limit for solving increasingly complex, resource-intensive computational challenges in diverse application areas. In contrast, quantum-based systems enable a myriad of possibilities for transformative technological advances in simulation, sensing, computation, and metrology by harnessing quantum mechanical phenomena. Through the unique physics of quantum mechanics, quantum systems process or exchange information that can surpass classical computing architectures and measure environmental variables with unprecedented sensitivity. However, deployment of quantum systems to diverse application arenas has been encumbered by the fragility of quantum states to the ever-present noisy thermal bath, thereby limiting the operation of current quantum devices to cryogenic temperatures. For this reason, fundamental investigations into new quantum information processing and sensing architectures are needed, particularly for the deployment of devices for room-temperature and biomedical applications. Here, novel quantum circuits are developed based on controlled excitonic states of biomolecular materials. The structural control and single-molecule addressability of highly programmable DNA nanostructures are leveraged together with synthetic dyes as an engineering platform for quantum-coherent excitonic systems. Controlling the positions and energies of distinct excitonic states using DNA-based scaffolds enables the integration of qubits into higher-order circuits to create multi-qubit systems and devices. Closely coupled theory and experiment are used to design and evaluate emergent qubit function. Novel, high-impact room-temperature quantum sensing and information processing devices are fabricated and characterized, with potential for integration into prototypical next-generation quantum technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摩尔定律,即硅基集成电路和个人计算设备中的晶体管数量大约每年翻一番的著名观察已经结束。未来十年的一个主要挑战是确定传统硅基计算的可行替代品。 需要这种替代办法, 满足世界范围内几乎所有生活领域日益增长的计算需求。 量子信息处理器可能是满足这一需求的一个可行的替代方案。 通过利用量子力学现象,量子计算机的计算能力可能超过传统的硅基集成电路的数量级。然而,迄今为止,量子信息处理需要在高度隔离和保护的环境中在超冷温度下运行。不存在在室温或潮湿条件下工作的可行的量子信息处理平台。 如果它们确实存在,那么这样的量子系统可以用于量子增强传感等任务。在这个项目中,结构化的DNA电路被用来构建基于量子的处理和传感设备,这些设备在室温和液态下运行。基于DNA的量子传感和信号处理设备的基本原理正在建立,并应用于实际的量子信息处理挑战,以证明这种革命性方法解决不同社会计算需求的可行性。来自化学,生物工程和材料科学以及电气工程的跨学科研究人员团队将采用这种变革性的方法实现室温信息处理器,并培养下一代跨学科量子计算机科学家和工程师经典的硅基计算已经达到了解决各种应用领域日益复杂,资源密集型计算挑战的极限。相比之下,基于量子的系统通过利用量子力学现象,为模拟、传感、计算和计量学领域的变革性技术进步提供了无数可能性。通过量子力学的独特物理学,量子系统处理或交换信息,可以超越经典计算架构,并以前所未有的灵敏度测量环境变量。然而,将量子系统部署到不同的应用领域已经受到量子状态对始终存在的噪声热浴的脆弱性的阻碍,从而将当前量子设备的操作限制在低温温度。因此,需要对新的量子信息处理和传感架构进行基础研究,特别是用于室温和生物医学应用的设备的部署。在这里,新的量子电路是基于生物分子材料的受控激子态开发的。高度可编程的DNA纳米结构的结构控制和单分子寻址能力与合成染料一起作为量子相干激子系统的工程平台。使用基于DNA的支架控制不同激子态的位置和能量,使量子比特能够集成到高阶电路中,以创建多量子比特系统和设备。采用紧密耦合的理论和实验方法设计和评价突现量子比特函数。新型、高影响力的室温量子传感和信息处理设备的制造和表征,具有集成到下一代量子技术原型中的潜力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Zero-Added-Loss Entangled-Photon Multiplexing for Ground- and Space-Based Quantum Networks
- DOI:10.1103/physrevapplied.19.054029
- 发表时间:2022-06
- 期刊:
- 影响因子:4.6
- 作者:Kevin C. Chen;Prajit Dhara;M. Heuck;Yuan Lee;W. Dai;S. Guha;D. Englund
- 通讯作者:Kevin C. Chen;Prajit Dhara;M. Heuck;Yuan Lee;W. Dai;S. Guha;D. Englund
Weaving DNA strands to control energy
编织DNA链来控制能量
- DOI:10.1016/j.chempr.2021.02.007
- 发表时间:2021
- 期刊:
- 影响因子:23.5
- 作者:Banal, James L.
- 通讯作者:Banal, James L.
Automated sequence design of 2D wireframe DNA origami with honeycomb edges
- DOI:10.1038/s41467-019-13457-y
- 发表时间:2019-11-28
- 期刊:
- 影响因子:16.6
- 作者:Jun, Hyungmin;Wang, Xiao;Bathe, Mark
- 通讯作者:Bathe, Mark
Strain-Correlated Localized Exciton Energy in Atomically Thin Semiconductors
- DOI:10.1021/acsphotonics.0c00626
- 发表时间:2020-05-20
- 期刊:
- 影响因子:7
- 作者:Moon, Hyowon;Bersin, Eric;Englund, Dirk
- 通讯作者:Englund, Dirk
State space distribution and dynamical flow for closed and open quantum systems
封闭和开放量子系统的状态空间分布和动态流
- DOI:10.1063/1.5100736
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dodin, Amro;Willard, Adam P.
- 通讯作者:Willard, Adam P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Bathe其他文献
Accelerated Subspace Iteration Method for Protein Normal Mode Analysis
- DOI:
10.1016/j.bpj.2008.12.2078 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Reza Sharifi Sedeh;Mark Bathe;Klaus-Jürgen Bathe - 通讯作者:
Klaus-Jürgen Bathe
Chromatin Architecture Reconstruction
- DOI:
10.1016/j.bpj.2011.11.2644 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Philipp M. Diesinger;Miriam Fritsche;Keyao Pan;Dieter Heermann;Mark Bathe - 通讯作者:
Mark Bathe
Conformational Dynamics and Allostery of Supramolecular Protein Assemblies: from the Nuclear Pore Complex to GroEL
- DOI:
10.1016/j.bpj.2010.12.1163 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Do-Nyun Kim;Cong-Tri Nguyen;Mark Bathe - 通讯作者:
Mark Bathe
F-Actin Mediated Chromosome Transport
- DOI:
10.1016/j.bpj.2011.11.1311 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Philipp M. Diesinger;Nilah Monnier M. Mori;Peter Lenart;Mark Bathe - 通讯作者:
Mark Bathe
Probing F-actin Stability and Mechanics using Structure-Based Computational Modeling
- DOI:
10.1016/j.bpj.2010.12.1834 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Philip Bransford;Roger Kamm;Mark Bathe - 通讯作者:
Mark Bathe
Mark Bathe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Bathe', 18)}}的其他基金
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
- 批准号:
2240309 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
AF Medium: DNA-based Data Storage and Computing Materials
AF Medium:基于DNA的数据存储和计算材料
- 批准号:
1956054 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: Autonomous Computing Materials
合作研究:自主计算材料
- 批准号:
1940231 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
DMREF: Computational Design of Next-generation Nanoscale DNA-based Materials
DMREF:下一代纳米级 DNA 材料的计算设计
- 批准号:
1729397 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Inferring the Physics of mRNA Trafficking in Neuronal Systems
推断神经系统中 mRNA 运输的物理原理
- 批准号:
1707999 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Top-down algorithmic design of structured nucleic acid assemblies
AF:中:协作研究:结构化核酸组装体的自上而下的算法设计
- 批准号:
1564025 - 财政年份:2016
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Algorithmic design principles for programmed DNA nanocages
EAGER:协作研究:编程 DNA 纳米笼的算法设计原理
- 批准号:
1547999 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
DMREF: Computational Design Principles for Functional DNA-Based Materials
DMREF:功能性 DNA 材料的计算设计原则
- 批准号:
1334109 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Inferring the Physics of Living Systems from Dynamic Light Microscopy Data
从动态光学显微镜数据推断生命系统的物理原理
- 批准号:
1305537 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant