EAGER: Collaborative Research: Algorithmic design principles for programmed DNA nanocages

EAGER:协作研究:编程 DNA 纳米笼的算法设计原理

基本信息

  • 批准号:
    1547999
  • 负责人:
  • 金额:
    $ 15.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

3D printing has revolutionized the ability to fabricate complex solid objects at the macroscopic scale using simple Computer-Aided Design (CAD) files as input. In this process, the user specifies the solid object using simple geometric primitives or surface-based meshes. Recent applications of this revolutionary technology include printing limb prosthetics and implants and tissue engineering scaffolds, as well as rapid prototyping of products in industries ranging from apparel and eyeware to automotive, aerospace, and art. A similar transformation in automated fabrication began in the 1970s using CAD for the design of complex electronics using very large scale integration (VLSI) to design circuits consisting of thousands of transistors. This CAD revolution also dramatically increased and broadened the participation of designers without detailed technical know-how needed to design and synthesize custom electrical circuits for diverse applications in industries ranging from mobile devices to biomedical implants. At the nanometer-scale, programmed self-assembly of synthetic DNA offers a similar ability to "print" complex 3D nanometer-scale objects with precisely defined 3D structural features. While the field of structural DNA nanotechnology is considerably younger than the preceding examples, recent technological and scientific advances have enabled the low-cost and reproducible synthesis of diverse structured DNA nano-objects, enabling numerous technological innovations including casting metallic nanoparticles for photonics and light-harvesting devices, fabricating therapeutic vectors that mimic viruses for drug and gene delivery, and developing nanoscale sensors for biomarker detection in disease diagnosis. Structural DNA nanotechnology currently faces a similar bottleneck in the broad participation of designers due to the need for automated CAD-based design software for these nano-objects. Here, development of a next-generation CAD framework is proposed to enable the fully automated design of structured DNA assemblies at the nanometer scale. As a starting point, the development of a CAD program is proposed here for the synthesis of a unique class of DNA-based objects called DNA nanocages. DNA nanocages can be programmed to adopt nearly arbitrary symmetries and sizes on this scale. Further, these DNA-based particles may be functionalized chemically with proteins, RNAs, chromophores, and other small molecules for diverse applications in biomolecular science and technology. In addition, these nanoscale materials can be transformed into structured inorganic materials including metals and silicon dioxide. To realize the aim of transforming the ability to design and fabricate DNA-based nanomaterials, an open-source software package will be developed to prescribe geometrically from the top-down nanocage size and symmetry using a simple high-level language and CAD environment that is distributed worldwide through the world-wide web. Synthetic DNA sequences that self-assemble to form these CAD-specified structures will be automatically generated for nanocage fabrication. Validation of nanocage synthesis will be performed experimentally using high-resolution structural and folding assays. This work forms the starting point for a new high-level programming language to print 3D objects at the nanometer-scale using synthetic DNA that will broadly enable the use and application of these assemblies across diverse research and industrial applications. Future work may extend this framework to arbitrary 2D and 3D DNA-based assemblies, as well as molecularly functionalized DNA-assemblies that mimic, as well as extend far beyond, nature's evolutionary designs.
3D 打印彻底改变了使用简单的计算机辅助设计 (CAD) 文件作为输入在宏观尺度上制造复杂实体物体的能力。在此过程中,用户使用简单的几何图元或基于表面的网格来指定实体对象。这项革命性技术的最新应用包括打印肢体假肢、植入物和组织工程支架,以及从服装和眼镜到汽车、航空航天和艺术等行业的产品快速原型制作。自动化制造领域的类似转变始于 20 世纪 70 年代,使用 CAD 来设计复杂的电子产品,使用超大规模集成 (VLSI) 来设计由数千个晶体管组成的电路。这场 CAD 革命还极大地增加和扩大了设计人员的参与度,而无需详细的技术知识即可为从移动设备到生物医学植入物等行业的各种应用设计和合成定制电路。在纳米尺度上,合成 DNA 的编程自组装提供了类似的能力,可以“打印”具有精确定义的 3D 结构特征的复杂 3D 纳米尺度物体。虽然结构 DNA 纳米技术领域比前面的例子要年轻得多,但最近的技术和科学进步已经实现了多种结构 DNA 纳米物体的低成本和可重复合成,从而实现了众多技术创新,包括为光子学和光捕获设备铸造金属纳米颗粒、制造模仿病毒的药物和基因治疗载体 交付,并开发用于疾病诊断中生物标志物检测的纳米级传感器。由于这些纳米物体需要基于 CAD 的自动化设计软件,结构 DNA 纳米技术目前在设计师的广泛参与方面也面临着类似的瓶颈。这里,建议开发下一代 CAD 框架,以实现纳米级结构化 DNA 组件的全自动设计。作为起点,本文建议开发 CAD 程序,用于合成一类独特的基于 DNA 的物体,称为 DNA 纳米笼。 DNA 纳米笼可以通过编程在这个尺度上采用几乎任意的对称性和尺寸。此外,这些基于 DNA 的颗粒可以用蛋白质、RNA、发色团和其他小分子进行化学功能化,用于生物分子科学和技术中的各种应用。此外,这些纳米级材料可以转化为包括金属和二氧化硅在内的结构化无机材料。为了实现转变设计和制造基于 DNA 的纳米材料的能力的目标,将开发一个开源软件包,使用简单的高级语言和 CAD 环境(通过万维网在全球范围内分发)从自上而下地规定纳米笼的尺寸和对称性。将自动生成用于纳米笼制造的自组装形成这些 CAD 特定结构的合成 DNA 序列。纳米笼合成的验证将通过高分辨率结构和折叠测定进行实验。这项工作构成了一种新的高级编程语言的起点,该语言可以使用合成 DNA 在纳米级打印 3D 物体,这将使这些组件在不同的研究和工业应用中广泛使用和应用。未来的工作可能会将这个框架扩展到任意基于 2D 和 3D DNA 的组件,以及模仿并远远超出自然进化设计的分子功能化 DNA 组件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Bathe其他文献

Accelerated Subspace Iteration Method for Protein Normal Mode Analysis
  • DOI:
    10.1016/j.bpj.2008.12.2078
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reza Sharifi Sedeh;Mark Bathe;Klaus-Jürgen Bathe
  • 通讯作者:
    Klaus-Jürgen Bathe
Chromatin Architecture Reconstruction
  • DOI:
    10.1016/j.bpj.2011.11.2644
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Philipp M. Diesinger;Miriam Fritsche;Keyao Pan;Dieter Heermann;Mark Bathe
  • 通讯作者:
    Mark Bathe
Conformational Dynamics and Allostery of Supramolecular Protein Assemblies: from the Nuclear Pore Complex to GroEL
  • DOI:
    10.1016/j.bpj.2010.12.1163
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Do-Nyun Kim;Cong-Tri Nguyen;Mark Bathe
  • 通讯作者:
    Mark Bathe
F-Actin Mediated Chromosome Transport
  • DOI:
    10.1016/j.bpj.2011.11.1311
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Philipp M. Diesinger;Nilah Monnier M. Mori;Peter Lenart;Mark Bathe
  • 通讯作者:
    Mark Bathe
Probing the Role of HIV Antigen Nanoscale Organization on B-Cell Activation with DNA Origami
  • DOI:
    10.1016/j.bpj.2018.11.3109
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Remi Veneziano;Tyson Moyer;Matthew B. Stone;Sudha Kumari;William R. Schief;Mark Bathe;Darrell Irvine
  • 通讯作者:
    Darrell Irvine

Mark Bathe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Bathe', 18)}}的其他基金

EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
  • 批准号:
    2240309
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
AF Medium: DNA-based Data Storage and Computing Materials
AF Medium:基于DNA的数据存储和计算材料
  • 批准号:
    1956054
  • 财政年份:
    2020
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Autonomous Computing Materials
合作研究:自主计算材料
  • 批准号:
    1940231
  • 财政年份:
    2019
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
DMREF: Computational Design of Next-generation Nanoscale DNA-based Materials
DMREF:下一代纳米级 DNA 材料的计算设计
  • 批准号:
    1729397
  • 财政年份:
    2018
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Room-Temperature Quantum Sensing and Computation using DNA-based Excitonic Circuits
RAISE-TAQS:使用基于 DNA 的激子电路进行室温量子传感和计算
  • 批准号:
    1839155
  • 财政年份:
    2018
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Inferring the Physics of mRNA Trafficking in Neuronal Systems
推断神经系统中 mRNA 运输的物理原理
  • 批准号:
    1707999
  • 财政年份:
    2017
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Top-down algorithmic design of structured nucleic acid assemblies
AF:中:协作研究:结构化核酸组装体的自上而下的算法设计
  • 批准号:
    1564025
  • 财政年份:
    2016
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
DMREF: Computational Design Principles for Functional DNA-Based Materials
DMREF:功能性 DNA 材料的计算设计原则
  • 批准号:
    1334109
  • 财政年份:
    2014
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Inferring the Physics of Living Systems from Dynamic Light Microscopy Data
从动态光学显微镜数据推断生命系统的物理原理
  • 批准号:
    1305537
  • 财政年份:
    2014
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了