DMREF: Collaborative Research: Transforming Electrocatalysis using Rational Design of Two Dimensional Materials
DMREF:协作研究:利用二维材料的合理设计转变电催化
基本信息
- 批准号:1729420
- 负责人:
- 金额:$ 108.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will employ an integrated theoretical and experimental approach to rapidly discover highly efficient catalysts, based on two-dimensional (2D) materials in contact with an ionic liquid, for a variety of electrochemical reactions of importance for sustainable energy generation, chemicals manufacturing, environmental remediation, and energy storage. Electrocatalysis - as employed in energy storage and conversion devices such as advanced batteries, fuel cells, photovoltaics, and chemical electrolyzers - is becoming an increasingly important alternative to conventional thermal catalysis, but needs further improvements in efficiency, cost reduction, and chemical selectivity for wide-scale commercial implementation. The project will address those needs by combining first-principles density functional theory calculations, including solvent interaction effects and theory-guided machine learning, to identify new ionic-liquid electrolytes and low-cost 2D materials capable of displacing existing thermal processes with electrocatalytic processes utilizing renewable and/or sustainable resources. Educational and outreach components of the project will focus on preparing both graduate and undergraduate students for the workforce needed to realize advanced energy technologies. Emphasis at both universities will be placed on the recruitment of minority and underrepresented student populations through existing programs including the Minority Engineering Recruitment and Retention Program (MERRP) at the University of Illinois-Chicago, and the Office of Undergraduate Research at Washington University. The theoretical and experimental dataset on 2D materials generated in the study, along with relevant computational codes, will be disseminated to the broader research community through on-line repositories.Two-dimensional transition metal dichalcogenides (TMDCs) in contact with ionic liquid (IL) electrolytes will be used as the starting materials offering a new paradigm for electrocatalysis based on materials with low work function, significant overlap of the d-band partial density of states with the Fermi energy, and an electrolyte 'solvent' that protects rather than poisons the catalytic sites. Novel material combinations and structures will be predicted using computational tools and then synthesized using chemical vapor deposition, chemical vapor transport and colloidal chemistry. Atomic and electronic structure will be characterized using in-situ aberration-corrected scanning transmission electron microscopy (STEM). The information obtained from high-resolution STEM, including high-angle annular dark-field (HAADF) and annular bright-field (ABF) imaging, as well as electron energy loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (XEDS), will be used to confirm successful synthesis of the desired structures and to create starting configurations for the first-principles modeling efforts. Both ex-situ and in-situ electrochemical experiments will be conducted to measure the activity and selectivity of the synthesized materials. In particular, the study will utilize a novel graphene liquid cell, developed by one of the investigators, that enables atomic-resolution imaging and spectroscopy in a liquid environment. Mechanistic studies of the electrocatalytic reactions and transport measurements will be made utilizing in-situ differential electrochemical mass spectrometry (DEMS) together with a traditional silicon nitride based electrochemical stage for STEM characterization under operando conditions. Taken together, the advanced synthesis, characterization, and evaluation techniques, coupled with efficient computational search methods, will accelerate the discovery of 2D material-based-catalysts with superior activity and selectivity for various electrochemical reactions including the oxygen reduction reaction (important in fuel cell technology), and the hydrogen evolution reaction (important in water electrolysis).
该项目将采用理论和实验相结合的方法,快速发现基于与离子液体接触的二维(2D)材料的高效催化剂,用于各种对可持续能源生产、化学品制造、环境修复和能量储存至关重要的电化学反应。用于先进电池、燃料电池、光伏和化学电解槽等储能和转换设备的电催化正在成为传统热催化的一种日益重要的替代方案,但需要在效率、成本和化学选择性方面进一步提高,才能实现大规模的商业应用。该项目将结合第一性原理密度泛函理论计算,包括溶剂相互作用效应和理论指导的机器学习,以确定新的离子液体电解液和能够用利用可再生和/或可持续资源的电催化过程取代现有热过程的低成本2D材料,从而满足这些需求。该项目的教育和推广部分将侧重于使研究生和本科生为实现先进能源技术所需的劳动力做好准备。这两所大学的重点将放在通过现有项目招收少数族裔和代表性不足的学生群体,包括伊利诺伊大学芝加哥分校的少数族裔工程招生和保留计划(MERRP)和华盛顿大学本科生研究办公室。研究中产生的2D材料的理论和实验数据集,以及相关的计算代码,将通过在线资源库传播给更广泛的研究社区。与离子液体(IL)电解质接触的二维过渡金属二卤化物(TMDCs)将作为起始材料,提供一种新的电催化范式,基于低功函数的材料,d带部分态密度与费米能量显著重叠的材料,以及保护而不是毒化催化中心的电解质溶剂。新的材料组合和结构将使用计算工具进行预测,然后使用化学气相沉积、化学气相传输和胶体化学来合成。原子和电子结构将使用原位像差校正扫描电子显微镜(STEM)进行表征。从高分辨率STEM获得的信息,包括高角度环状暗场(HAADF)和环状亮场(ABF)成像,以及电子能量损失谱(EELS)和能量色散X射线谱(XEDS),将用于确认所需结构的成功合成,并为第一原理建模工作创建初始构型。将进行非原位和原位两种电化学实验,以测量合成材料的活性和选择性。特别是,这项研究将利用一名研究人员开发的新型石墨烯液体电池,该电池可以在液体环境中进行原子分辨率成像和光谱分析。利用原位差示电化学质谱(DEM)和传统的氮化硅为基础的电化学台,对电催化反应和传输测量的机理进行了研究,以在OPANDO条件下进行STEM表征。综上所述,先进的合成、表征和评估技术,加上高效的计算搜索方法,将加速发现具有优异活性和选择性的2D材料基催化剂,用于各种电化学反应,包括氧还原反应(在燃料电池技术中很重要)和析氢反应(在水电解中很重要)。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Comparative Study of Redox Mediators for Improved Performance of Li–Oxygen Batteries
- DOI:10.1002/aenm.202000201
- 发表时间:2020-06
- 期刊:
- 影响因子:27.8
- 作者:Chengji Zhang;Naveen K. Dandu;Sina Rastegar;Saurabh N. Misal;Z. Hemmat;A. Ngo;L. Curtiss;A. Salehi‐khoji
- 通讯作者:Chengji Zhang;Naveen K. Dandu;Sina Rastegar;Saurabh N. Misal;Z. Hemmat;A. Ngo;L. Curtiss;A. Salehi‐khoji
Metal-Nitrogen-Carbon Cluster Decorated Titanium Carbide is a Durable and Inexpensive Oxygen Reduction Reaction Electrocatalyst
金属-氮-碳簇装饰碳化钛是一种耐用且廉价的氧还原反应电催化剂
- DOI:10.1002/cssc.202101341
- 发表时间:2021
- 期刊:
- 影响因子:8.4
- 作者:Cho, S. B.
- 通讯作者:Cho, S. B.
High-Rate Long Cycle-Life Li-Air Battery Aided by Bifunctional InX3 (X = I and Br) Redox Mediators
- DOI:10.1021/acsami.0c15200
- 发表时间:2021-01-22
- 期刊:
- 影响因子:9.5
- 作者:Rastegar, Sina;Hemmat, Zahra;Salehi-Khojin, Amin
- 通讯作者:Salehi-Khojin, Amin
New Class of Electrocatalysts Based on 2D Transition Metal Dichalcogenides in Ionic Liquid
- DOI:10.1002/adma.201804453
- 发表时间:2019-01-25
- 期刊:
- 影响因子:29.4
- 作者:Majidi, Leily;Yasaei, Poya;Salehi-Khojin, Amin
- 通讯作者:Salehi-Khojin, Amin
Layered electrides as fluoride intercalation anodes
作为氟化物插层阳极的层状电子化合物
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Steven T. Hartman, Rohan Mishra
- 通讯作者:Steven T. Hartman, Rohan Mishra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amin Salehi-Khojin其他文献
Nanotubes throw their heat around
纳米管将热量四处散发。
- DOI:
10.1038/nnano.2012.68 - 发表时间:
2012-05-09 - 期刊:
- 影响因子:34.900
- 作者:
Amin Salehi-Khojin;Wei Zhu;Richard I. Masel - 通讯作者:
Richard I. Masel
Enthalpy relaxation of reactive graphitic nanofibers reinforced epoxy
- DOI:
10.1007/s10853-006-1155-8 - 发表时间:
2007-04-16 - 期刊:
- 影响因子:3.900
- 作者:
Amin Salehi-Khojin;Soumen Jana;Wei-Hong Katie Zhong - 通讯作者:
Wei-Hong Katie Zhong
Stabilizing lithium superoxide formation in lithium-air batteries by Janus chalcogenide catalysts
- DOI:
10.1016/j.nanoen.2024.110510 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Pardis Seraji;Hessam Shahbazi;Musawenkosi K. Ncube;Nannan Shan;Francisco Lagunas;Ilias Papailias;Pouyan Navabi;Chengji Zhang;Ahmad Jaradat;Sara Kadkhodaei;Ksenija D. Glusac;Robert F. Klie;Anh T. Ngo;Larry A. Curtiss;Amin Salehi-Khojin - 通讯作者:
Amin Salehi-Khojin
Amin Salehi-Khojin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amin Salehi-Khojin', 18)}}的其他基金
EFRI 2DARE: Thermal Transport in 2D Materials for Next Generation Nanoelectronics- From Fundamentals to Devices
EFRI 2DARE:下一代纳米电子学二维材料中的热传输 - 从基础知识到设备
- 批准号:
1542864 - 财政年份:2015
- 资助金额:
$ 108.16万 - 项目类别:
Standard Grant
UNS:Efficient CO2 Electrochemical Reduction on Transition Metal Dichalcogenide Catalysts
UNS:过渡金属二硫属化物催化剂上的高效 CO2 电化学还原
- 批准号:
1512647 - 财政年份:2015
- 资助金额:
$ 108.16万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 108.16万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 108.16万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 108.16万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 108.16万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 108.16万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 108.16万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 108.16万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 108.16万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 108.16万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 108.16万 - 项目类别:
Standard Grant














{{item.name}}会员




