DMREF/Collaborative Research: Multiscale Alloy Design of HCP Alloys via Twin Mesh Engineering

DMREF/合作研究:通过双网格工程进行 HCP 合金的多尺度合金设计

基本信息

  • 批准号:
    1729829
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Hexagonal close packed (HCP) metals such as magnesium and titanium have the potential to provide unprecedented combinations of mechanical properties. Successful incorporation of HCP metals into engineering designs is, however, hindered by their limited plasticity. Recent research results have introduced the exciting potential of an approach termed "twin mesh engineering". which can be applied to induce simultaneous strengthening and toughening in HCP metals. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports fundamental research to formulate the scientific framework required to design twin meshes. The integrated experimental and modeling research activities will seek to discover if alloying can be used to create the right twin mesh for high strength, high toughness HCP alloys. The resulting materials will have applications in energy efficient manufacturing where materials with attributes such as high strength, low density, room-temperature formability and cost competitiveness are required. A diverse group of student researchers will participate in the research program at both the graduate and undergraduate levels.This award will support a research collaboration between the Universities of California at Santa Barbara, Irvine and Davis to explore interrelationships between slip and twinning in HCP metals, such as magnesium and titanium. As fine slip tends to accentuate twinning in FCC metals, one of the goals of this research will be to evaluate the influence of alloying elements on slip patterns, both experimentally and computationally using first principles. After discerning compositions that twin readily, textures that enable the formation of 3-D twin meshes in polycrystalline samples will be assessed computationally. Since slip and twinning occur concomitantly, twin meshes will block both slip and twins, leading to strengthening and toughness. The knowledge generated from this research will be used to create a multiscale tool kit, called the twin-mesh module (TMM), which when fully operational will coordinate calculations pertaining slip-twin and twin-twin interactions, processing, twin-mesh microstructure evolution, and properties. Experimentally validated TMM will accelerate materials discovery and design of HCP alloys by providing guidance on processing pathways to create 3-D twin meshes that are consistent with industrial practices. This advancement along the Materials Development Continuum will lead to expanded use of low-density, high strength, high toughness alloys, reducing weight and fuel consumption.
密堆积(HCP)金属如镁和钛具有提供前所未有的机械性能组合的潜力。然而,HCP金属在工程设计中的成功应用受到其有限塑性的阻碍。 最近的研究结果介绍了令人兴奋的潜力的方法称为“双网工程”。其可用于在HCP金属中诱导同时强化和韧化。这个设计材料革命和工程我们的未来(DMREF)奖支持基础研究,制定设计双网格所需的科学框架。综合实验和建模研究活动将寻求发现合金化是否可以用于为高强度,高韧性HCP合金创建正确的孪生网格。由此产生的材料将在节能制造中具有应用,其中需要具有高强度,低密度,室温成形性和成本竞争力等属性的材料。多元化的学生研究人员将参与研究生和本科生级别的研究项目。该奖项将支持加州大学圣巴巴拉分校、欧文大学和戴维斯大学之间的研究合作,以探索HCP金属(例如镁和钛)中滑动和孪生之间的相互关系。由于细滑往往会加剧FCC金属中的孪晶,本研究的目标之一将是评估合金元素对滑移模式的影响,实验和计算使用第一原理。在辨别出容易孪生的成分后,将通过计算评估能够在多晶样品中形成3-D孪生网格的纹理。由于滑移和孪晶同时发生,因此孪晶网格将阻止滑移和孪晶,从而导致强化和韧性。从这项研究中产生的知识将被用来创建一个多尺度工具包,称为双网格模块(TMM),当完全运行时,将协调有关滑移双和双双相互作用,加工,双网格微观结构演变和性能的计算。经过实验验证的TMM将通过提供加工途径的指导来加速HCP合金的材料发现和设计,以创建符合工业实践的3D孪生网格。这一进展沿着材料开发连续体,将导致低密度、高强度、高韧性合金的广泛使用,从而减轻重量和降低燃料消耗。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revealing the deformation mechanisms for room-temperature compressive superplasticity in nanocrystalline magnesium
  • DOI:
    10.1016/j.mtla.2020.100731
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Wang, Xin;Jiang, Lin;Schoenung, Julie M.
  • 通讯作者:
    Schoenung, Julie M.
Disconnection-Mediated Twin Embryo Growth in Mg
  • DOI:
    10.2139/ssrn.3465850
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Hu;V. Turlo;I. Beyerlein;S. Mahajan;E. Lavernia;J. Schoenung;T. Rupert
  • 通讯作者:
    Yang Hu;V. Turlo;I. Beyerlein;S. Mahajan;E. Lavernia;J. Schoenung;T. Rupert
Manipulating deformation mechanisms with Y alloying of Mg
  • DOI:
    10.1016/j.msea.2021.141373
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaxiang Wang;Xin Wang;Kehang Yu;T. Rupert;S. Mahajan;E. Lavernia;J. Schoenung;I. Beyerlein
  • 通讯作者:
    Jiaxiang Wang;Xin Wang;Kehang Yu;T. Rupert;S. Mahajan;E. Lavernia;J. Schoenung;I. Beyerlein
Twin nucleation from disconnection-dense sites between stacking fault pairs in a random defect network
  • DOI:
    10.1016/j.mtla.2023.101835
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Kehang Yu;Xin Wang;S. Mahajan;I. Beyerlein;P. Cao;T. Rupert;J. Schoenung;E. Lavernia
  • 通讯作者:
    Kehang Yu;Xin Wang;S. Mahajan;I. Beyerlein;P. Cao;T. Rupert;J. Schoenung;E. Lavernia
Toughening magnesium with gradient twin meshes
  • DOI:
    10.1016/j.actamat.2020.05.021
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Xin Wang;Lin Jiang;Chase Cooper;Kehang Yu;Dalong Zhang;T. Rupert;S. Mahajan;I. Beyerlein;E. Lavernia;J. Schoenung
  • 通讯作者:
    Xin Wang;Lin Jiang;Chase Cooper;Kehang Yu;Dalong Zhang;T. Rupert;S. Mahajan;I. Beyerlein;E. Lavernia;J. Schoenung
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julie Schoenung其他文献

Julie Schoenung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julie Schoenung', 18)}}的其他基金

Understanding Transformation Superplasticity, High Temperature Deformation and Manufacturing of Entropy Stabilized Oxides
了解相变超塑性、高温变形和熵稳定氧化物的制造
  • 批准号:
    2414950
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Understanding Transformation Superplasticity, High Temperature Deformation and Manufacturing of Entropy Stabilized Oxides
了解相变超塑性、高温变形和熵稳定氧化物的制造
  • 批准号:
    2029966
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Materials Selection and Design - A Tool to Enable Sustainable Materials Development and a Reduced Materials Footprint
材料选择和设计 - 实现可持续材料开发和减少材料足迹的工具
  • 批准号:
    1916556
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
SusChEM: Sustainable material use in laser deposition: integrating experimental design, environmental impact assessment and economic evaluation
SusChEM:激光沉积中的可持续材料使用:整合实验设计、环境影响评估和经济评估
  • 批准号:
    1605392
  • 财政年份:
    2016
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
A Fundamental Investigation of the Laser Engineered Net Shaping Process for the Fabrication of Nanostructured Cermets
用于制造纳米结构金属陶瓷的激光工程净成形工艺的基础研究
  • 批准号:
    0423695
  • 财政年份:
    2004
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了