DMREF/Collaborative Research: Multiscale Alloy Design of HCP Alloys via Twin Mesh Engineering

DMREF/合作研究:通过双网格工程进行 HCP 合金的多尺度合金设计

基本信息

  • 批准号:
    1729887
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Hexagonal close packed (HCP) metals such as magnesium and titanium have the potential to provide unprecedented combinations of mechanical properties. Successful incorporation of HCP metals into engineering designs is, however, hindered by their limited plasticity. Recent research results have introduced the exciting potential of an approach termed "twin mesh engineering" which can be applied to induce simultaneous strengthening and toughening in HCP metals. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports fundamental research to formulate the scientific framework required to design twin meshes. The integrated experimental and modeling research activities will seek to discover if alloying can be used to create the right twin mesh for high strength, high toughness HCP alloys. The resulting materials will have applications in energy efficient manufacturing where materials with attributes such as high strength, low density, room-temperature formability and cost competitiveness are required. A diverse group of student researchers will participate in the research program at both the graduate and undergraduate levels.This award will support a research collaboration between the Universities of California at Santa Barbara, Irvine and Davis to explore interrelationships between slip and twinning in HCP metals, such as magnesium and titanium. As fine slip tends to accentuate twinning in FCC metals, one of the goals of this research will be to evaluate the influence of alloying elements on slip patterns, both experimentally and computationally using first principles. After discerning compositions that twin readily, textures that enable the formation of 3-D twin meshes in polycrystalline samples will be assessed computationally. Since slip and twinning occur concomitantly, twin meshes will block both slip and twins, leading to strengthening and toughness. The knowledge generated from this research will be used to create a multiscale tool kit, called the twin-mesh module (TMM), which when fully operational will coordinate calculations pertaining slip-twin and twin-twin interactions, processing, twin-mesh microstructure evolution, and properties. Experimentally validated TMM will accelerate materials discovery and design of HCP alloys by providing guidance on processing pathways to create 3-D twin meshes that are consistent with industrial practices. This advancement along the Materials Development Continuum will lead to expanded use of low-density, high strength, high toughness alloys, reducing weight and fuel consumption.
六方紧密堆积(HCP)金属,如镁和钛,具有提供前所未有的机械性能组合的潜力。然而,HCP金属在工程设计中的成功结合受到其有限塑性的阻碍。最近的研究结果介绍了一种称为“双网格工程”的方法的令人兴奋的潜力,该方法可用于诱导HCP金属的同时强化和增韧。这个设计材料革命和工程我们的未来(DMREF)奖支持基础研究,以制定设计双网格所需的科学框架。综合实验和建模研究活动将寻求发现合金是否可以用于创建高强度,高韧性HCP合金的正确双网格。由此产生的材料将在节能制造中得到应用,其中需要具有高强度,低密度,室温成型性和成本竞争力等特性的材料。一个多样化的学生研究小组将在研究生和本科阶段参与研究项目。该奖项将支持加州大学圣巴巴拉分校、欧文分校和戴维斯分校之间的一项研究合作,探索HCP金属(如镁和钛)中滑移和孪生之间的相互关系。由于细滑移往往会加剧FCC金属的孪生,本研究的目标之一将是评估合金元素对滑移模式的影响,实验和计算使用第一性原理。在辨别出易于孪生的成分后,可以在多晶样品中形成三维孪生网格的纹理将被计算评估。由于滑移和孪晶同时发生,孪晶网将同时阻挡滑移和孪晶,从而增强和增强韧性。从这项研究中获得的知识将用于创建一个称为双网格模块(TMM)的多尺度工具包,该工具包在完全运行时将协调有关滑移孪晶和双孪晶相互作用、处理、双网格微观结构演变和性能的计算。实验验证的TMM将通过提供与工业实践一致的3d双网格加工路径的指导,加速HCP合金的材料发现和设计。沿着材料开发连续体的这一进步将导致低密度、高强度、高韧性合金的广泛使用,从而减轻重量和燃料消耗。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adjustment of the Mechanical Properties of Mg2Nd and Mg2Yb by Optimizing Their Microstructures
  • DOI:
    10.3390/met11030377
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Jonas Schmidt;I. Beyerlein;M. Knezevic;W. Reimers
  • 通讯作者:
    Jonas Schmidt;I. Beyerlein;M. Knezevic;W. Reimers
Characterization of Staggered Twin Formation in HCP Magnesium
HCP 镁中交错孪晶形成的表征
  • DOI:
    10.1007/978-3-030-05789-3_31
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arul Kumar, M.;Leu, Brandon;Rottmann, Paul;Beyerlein, Irene J.
  • 通讯作者:
    Beyerlein, Irene J.
Toughening magnesium with gradient twin meshes
  • DOI:
    10.1016/j.actamat.2020.05.021
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Xin Wang;Lin Jiang;Chase Cooper;Kehang Yu;Dalong Zhang;T. Rupert;S. Mahajan;I. Beyerlein;E. Lavernia;J. Schoenung
  • 通讯作者:
    Xin Wang;Lin Jiang;Chase Cooper;Kehang Yu;Dalong Zhang;T. Rupert;S. Mahajan;I. Beyerlein;E. Lavernia;J. Schoenung
Revealing deformation mechanisms in Mg–Y alloy by in situ deformation of nano-pillars with mediated lateral stiffness
  • DOI:
    10.1557/jmr.2019.124
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Dalong Zhang;Lin Jiang;Xin Wang;I. Beyerlein;A. Minor;J. Schoenung;S. Mahajan;E. Lavernia
  • 通讯作者:
    Dalong Zhang;Lin Jiang;Xin Wang;I. Beyerlein;A. Minor;J. Schoenung;S. Mahajan;E. Lavernia
Understanding the interaction of extension twinning and basal-plate precipitates in Mg-9Al using precession electron diffraction
  • DOI:
    10.1016/j.mtla.2021.101044
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    K. Xie;Dexin Zhao;Brandon Leu;Xiaolong Ma;Q. Jiao;J. El-Awady;T. Weihs;I. Beyerlein;M. A. Kumar-M.
  • 通讯作者:
    K. Xie;Dexin Zhao;Brandon Leu;Xiaolong Ma;Q. Jiao;J. El-Awady;T. Weihs;I. Beyerlein;M. A. Kumar-M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irene Beyerlein其他文献

Irene Beyerlein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irene Beyerlein', 18)}}的其他基金

Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323938
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313861
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Coupled Explicit Thermodynamics of Plasticity - An Innovative Model for Twinning Crystals
合作研究:耦合显式塑性热力学——孪生晶体的创新模型
  • 批准号:
    2051390
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Immiscible Phase Interface-Driven Processing of Ultrafine-Laminated Structures for Lightweight and Strong Magnesium-Based Sheets
GOALI/合作研究:轻质高强度镁基板材的超细层压结构的不混溶相界面驱动加工
  • 批准号:
    1728224
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了