AitF: Mechanism Design and Machine Learning for Peer Grading
AitF:同行评分的机制设计和机器学习
基本信息
- 批准号:1733860
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores the design and analysis of peer grading technology. A peer grading system is an online tool that collects student submissions, assigns review tasks to the students and graders, and aggregates reviews to produce assessments of both the submissions and the peer reviews. The PIs have developed a prototype system and have collected preliminary evidence that suggests that peer review has important potential benefits:1. Learning by reviewing: Students learn from critical assessment of other students' work. In the PIs' prototype at Northwestern, 60% of the students reported that peer review helped them learn course material and 55% of the students reported that peer review helped them to prepare better homework solutions themselves.2. Reduced grading staff: Peer grading reduces the grading load on course staff and allows for effective teaching with larger classes. This is especially important currently, as interest in computer science classes increases at a faster pace than teaching resources. In the PIs' prototype at Northwestern, the course staff graded 1/5 of the student submissions.3. Promptness of feedback: Reduced teacher grading enables prompt feedback to students. In the PIs' prototype at Northwestern, peer reviews were available within three days and final assessment of both the submission and peer reviews were available within five days. Prior to introducing peer review, assessments took one to two weeks.A peer grading system is comprised of three main components:1. The review matching algorithm determines which peers should review which submissions and which submissions should be reviewed by the teacher.2. The submission grading algorithm aggregates the reviews of the peers and the submissions and assigns grades to the submissions.3. The review grading algorithm compares the peer reviews with the teacher reviews and assigns grades to the peer reviews. Without this algorithm, peers may not put effort into providing quality reviews, and the reviews will be neither accurate for grading nor beneficial for the peer.The details of these algorithms are crucial for the proper working of the peer review system. A main research effort of this project is to identify the algorithms to use for each of these components. The review matching algorithm affects the accuracy of the subsequent grading algorithms and the grading load of the teacher. The submission grading algorithm determines which peer reviews are accurate and which are inaccurate and uses this understanding to assign grades to the submissions that are representative of the submission quality. The review grading algorithm incentivizes the peers to put in sufficient effort to determine whether a submission is good or bad and it is calibrated so that good reviews and bad reviews get the appropriate review grades. The PIs have implemented prototypes of these algorithms as part of a peer grading system that has been prototyped in Northwestern computer science classes. However, the space of possible algorithms is large and the PIs' work on the prototype has yet to determine the algorithms that combine to give the best education outcomes. A main focus of this project will be improving the understanding of which algorithms lead to the best education outcomes.Theoretical work in algorithms and machine learning provides a starting point for the project's study of good algorithms for peer grading systems. A key endeavor of the project is translating and applying these theoretical algorithms to the peer grading domain. As one example, proper scoring rules are a natural approach for grading the peer reviews. However, test runs of the PIs' prototype implementation suggest that these rules might not be so good in practice. Both new models and algorithms are needed in theory, and these new algorithms need to work in practice.
本课题对同行评分技术的设计与分析进行了探索。同行评分系统是一个在线工具,它收集学生提交的材料,向学生和评分者分配审查任务,并汇总评论以产生对提交材料和同行审查的评估。PIs开发了一个原型系统,并收集了初步证据,表明同行评议具有重要的潜在好处:1.在复习中学习:学生从对其他学生作业的批判性评估中学习。在西北大学PIS的原型中,60%的学生报告同行评议帮助他们学习课程材料,55%的学生报告同行评议帮助他们自己准备更好的家庭作业解决方案。减少评分人员:同伴评分减轻了课程人员的评分负担,并允许在大班情况下进行有效教学。这一点在当前尤为重要,因为人们对计算机科学课程的兴趣增长速度快于教学资源。在西北大学PI的原型中,课程工作人员给五分之一的学生提交的材料打分。反馈迅速:降低教师评分使学生能够迅速得到反馈。在西北大学的PIS原型中,同行评审在三天内完成,提交和同行评审的最终评估在五天内完成。在引入同行评议之前,评估需要一到两周的时间。同行评分系统由三个主要组成部分组成:1.评审匹配算法确定哪些同行应该评审哪些提交的作品,哪些提交的作品应该由教师评审。提交评分算法将同行的评论和提交进行聚合,并对提交进行评分。点评评分算法将同行点评与教师点评进行比较,并对同行点评进行评分。如果没有该算法,同行可能不会努力提供高质量的评论,评论既不能准确评分,也不能对同行有利,这些算法的细节对于同行评审系统的正常工作至关重要。该项目的一个主要研究工作是确定用于每个组件的算法。复习匹配算法影响到后续评分算法的准确性和教师的评分负担。提交评分算法确定哪些同行评审是准确的,哪些是不准确的,并使用这种理解来对代表提交质量的提交进行评级。评论评分算法激励同行投入足够的努力来确定提交的文章是好是坏,并对其进行校准,以便好评论和坏评论获得适当的评论评分。PI已经实现了这些算法的原型,作为同行评分系统的一部分,该系统已在西北大学的计算机科学课程中原型。然而,可能的算法空间很大,PI在原型上的工作还没有确定结合在一起给出最佳教育结果的算法。这个项目的一个主要焦点将是提高对哪些算法能够产生最好的教育结果的理解。算法和机器学习方面的理论工作为该项目为同行评分系统研究良好的算法提供了一个起点。该项目的一个关键工作是将这些理论算法翻译并应用到同行评分领域。例如,适当的评分规则是对同行评议进行评分的自然方法。然而,PI原型实现的测试运行表明,这些规则在实践中可能并不是那么好。理论上需要新的模型和算法,而这些新的算法需要在实践中发挥作用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimization of Scoring Rules
评分规则优化
- DOI:10.1145/3490486.3538338
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Yingkai;Hartline, Jason D.;Shan, Liren;Wu, Yifan
- 通讯作者:Wu, Yifan
Practical Methods for Semi-automated Peer Grading in a Classroom Setting
课堂环境中半自动同伴评分的实用方法
- DOI:10.1145/3340631.3394878
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Yuan, Zheng;Downey, Doug
- 通讯作者:Downey, Doug
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Hartline其他文献
Full surplus extraction from samples
- DOI:
10.1016/j.jet.2021.105230 - 发表时间:
2021-04-01 - 期刊:
- 影响因子:
- 作者:
Hu Fu;Nima Haghpanah;Jason Hartline;Robert Kleinberg - 通讯作者:
Robert Kleinberg
Decision Theoretic Foundations for Experiments Evaluating Human Decisions
评估人类决策的实验的决策理论基础
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
J. Hullman;Alex Kale;Jason Hartline - 通讯作者:
Jason Hartline
SIGecom Job Market Candidate Pro(cid:28)les 2020
SIGecom 就业市场候选人 Pro(cid:28)les 2020
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Vasilis Gkatzelis;Jason Hartline;Rupert Freeman;Aleck C. Johnsen;Bo Li;Amin Rahimian;Ariel Schvartzman Cohenca;Ali Shameli;Yixin Tao;David Wajc;Adam Wierman;Babak Hassibi - 通讯作者:
Babak Hassibi
ElicitationGPT: Text Elicitation Mechanisms via Language Models
EliminationGPT:通过语言模型的文本引出机制
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yifan Wu;Jason Hartline - 通讯作者:
Jason Hartline
Fair Grading Algorithms for Randomized Exams
随机考试的公平评分算法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jiale Chen;Jason Hartline;Onno Zoeter - 通讯作者:
Onno Zoeter
Jason Hartline的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Hartline', 18)}}的其他基金
AF: Small: Mechanism Design for the Classroom
AF:小:课堂的机制设计
- 批准号:
2229162 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
- 批准号:
1934931 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
AF: Small: Non-revelation Mechanism Design
AF:小:非暴露机构设计
- 批准号:
1618502 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
ICES: Small: Collaborative Research:Understanding the Roles of Intermediaries in Matching Markets
ICES:小型:协作研究:了解中介机构在匹配市场中的作用
- 批准号:
1216095 - 财政年份:2012
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
ICES: Large: Collaborative Research: Towards Realistic Mechanisms: statistics, inference, and approximation in simple Bayes-Nash implementation
ICES:大型:协作研究:走向现实机制:简单贝叶斯-纳什实现中的统计、推理和近似
- 批准号:
1101717 - 财政年份:2011
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
CAREER: Networked Game Theory and Mechanism Design
职业:网络博弈论和机制设计
- 批准号:
1055020 - 财政年份:2011
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanism Design and Approximation
合作研究:机制设计与近似
- 批准号:
0830773 - 财政年份:2008
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
相似国自然基金
激发态氢气分子(e,2e)反应三重微分截面的高阶波恩近似和two-step mechanism修正
- 批准号:11104247
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Mechanism Design for All
NSF-BSF:所有人的机制设计
- 批准号:
2343922 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Mechanism design by information intermediaries
信息中介机构设计
- 批准号:
24K04782 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Optimizing Healthcare Operations through Incentive Mechanism Design
职业生涯:通过激励机制设计优化医疗运营
- 批准号:
2339767 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
FMitF: Track I: Formal Verification for Mechanism Design
FMITF:第一轨:机制设计的形式验证
- 批准号:
2319186 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Research on Investigation of Damping Mechanism and Optimal Design of Metal Additively Manufactured Powder Damper
金属增材制造粉末阻尼器阻尼机理研究及优化设计研究
- 批准号:
23KJ2035 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Decoding the fundamental principles of autonomous clocks: mechanism, design and function
解读自主时钟的基本原理:机制、设计和功能
- 批准号:
10685116 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Theoretical Elucidation of the Adaptation Mechanism in Molecular Motors and Its Application to Advanced Function Design
分子马达适应机制的理论阐明及其在高级功能设计中的应用
- 批准号:
22KJ0505 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mechanism Design by an Informed Principal: An Application to the Problems of Aftermarkets
知情委托人的机制设计:对售后市场问题的应用
- 批准号:
23K01315 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Experimental study on irreversible deterioration mechanism of CFRP-steel bonding system and durability-based design optimization
CFRP-钢粘结体系不可逆劣化机理实验研究及基于耐久性的设计优化
- 批准号:
23K13396 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Design method of steel buckling-restrained braced frame securing business continuity considering complex and varying stress transfer mechanism
考虑复杂多变的应力传递机制确保业务连续性的钢制屈曲约束支撑框架设计方法
- 批准号:
23K13392 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Grant-in-Aid for Early-Career Scientists