NRI: FND: Smart Material Composites and Design of Internal Structural Geometry for Tunably Compliant Soft Robots

NRI:FND:智能材料复合材料和可调谐柔性机器人的内部结构几何设计

基本信息

  • 批准号:
    1734117
  • 负责人:
  • 金额:
    $ 28.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

This project will demonstrate soft robots that can radically modulate their stiffness in a manner comparable to biological systems. This ability will enable robots that can safely collaborate with human co-workers in the service and manufacturing industries. The creation of intrinsically flexible robots using materials such as soft rubbers and foams is a stark contrast to the traditional paradigm of large, heavy, rapidly moving robotics in isolated environments, and has played an important role towards moving robots from the factory floor to the home, clinic, and office. However the intrinsic compliance that makes soft materials safe also makes them unable to exert large forces or to maintain their shape when acted upon by outside forces. In many biological systems, animals are able to change the magnitude and directionality of their soft tissue stiffness through muscle contractions and modification of internal fluid pressures. This project will show researchers how to use controllable compliance in robotic components to obtain the benefits of soft materials -- adaptability, fault tolerance, and safety -- while also providing greater force and manipulation capabilities. The results will find application in a wide range of applications, including home health care, medical interventions, factory automation, and disaster response. The simplicity and safety of experimental exploration with soft robotics also provides an ideal platform for high schools students and undergraduate students to get involved in the emerging field of soft robotics.The central hypothesis of this research is that the development of tunable compliance - with respect to location, magnitude, and directionality - will provide greater dexterity and control and allow soft robotic designs to exert larger and more precise forces on their environment. This work will research the effects of compositing smart materials with existing soft robotic components to identify the fundamental principles of geometric design of the smart material aggregate. The intention is to imbue soft robots with the ability to dynamically adjust the magnitude, spatial location, and directionality of their compliance. These three aspects of tunable compliance will require new methods of modeling kinematics and dynamics as a function of the control of the smart material stimuli, in conjunction with other traditional actuation schemes such as tendons and pneumatics. Another primary result of the project will be quantitative metrics to objectively describe the capabilities of the resulting tunably compliant robots, in order to formally optimize the geometry of the smart material aggregate.
该项目将展示软体机器人可以从根本上调节其刚度,其方式与生物系统相当。这种能力将使机器人能够安全地与服务和制造业的人类同事合作。使用软橡胶和泡沫等材料创造的具有内在柔性的机器人与传统的大型、重型、在孤立环境中快速移动的机器人形成鲜明对比,并在将机器人从工厂车间移动到家庭、诊所和办公室方面发挥了重要作用。然而,使软材料安全的内在顺应性也使它们在受到外力作用时无法施加较大的力或保持其形状。在许多生物系统中,动物能够通过肌肉收缩和内部流体压力的改变来改变软组织刚度的大小和方向性。该项目将向研究人员展示如何在机器人部件中使用可控顺应性,以获得软材料的优点——适应性、容错性和安全性——同时还提供更大的力和操纵能力。研究结果将在广泛的应用中得到应用,包括家庭保健、医疗干预、工厂自动化和灾难响应。软机器人实验探索的简单性和安全性也为高中生和大学生参与软机器人这一新兴领域提供了理想的平台。这项研究的中心假设是,可调顺应性的发展——关于位置、大小和方向性——将提供更大的灵活性和控制力,并允许软机器人设计对其环境施加更大、更精确的力。这项工作将研究智能材料与现有软机器人部件的复合效果,以确定智能材料集合体几何设计的基本原则。其目的是使软机器人具有动态调整其顺应性的大小、空间位置和方向性的能力。这三个方面的可调遵从性将需要新的建模运动学和动力学方法,作为智能材料刺激控制的功能,并结合其他传统的驱动方案,如肌腱和气动。该项目的另一个主要成果将是量化指标,以客观地描述所产生的可调顺应机器人的能力,以便正式优化智能材料集合体的几何形状。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Versatile Layering Approach to Pneumatic Soft Actuator Manufacturing
气动软执行器制造的多功能分层方法
Design of a Highly-Maneuverable Pneumatic Soft Actuator Driven by Intrinsic SMA Coils (PneuSMA Actuator)
由本征 SMA 线圈驱动的高机动性气动软执行器(PneuSMA 执行器)的设计
Smart material composites for discrete stiffness materials
  • DOI:
    10.1088/1361-665x/ab1ec9
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Emily A. Allen;L. Taylor;J. Swensen
  • 通讯作者:
    Emily A. Allen;L. Taylor;J. Swensen
A Novel Flexible Bio-Inspired Pneumatic Valve Adapter for Soft Robotic Vasculature
用于软机器人脉管系统的新型柔性仿生气动阀适配器
Configuration Modeling of a Soft Robotic Element with Selectable Bending Axes
具有可选弯曲轴的软机器人元件的配置建模
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Swensen其他文献

John Swensen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
  • 批准号:
    31670112
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
  • 批准号:
    MR/Y004000/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
  • 批准号:
    2311967
  • 财政年份:
    2022
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024882
  • 财政年份:
    2021
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024646
  • 财政年份:
    2021
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
  • 批准号:
    2024792
  • 财政年份:
    2021
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
  • 批准号:
    2024670
  • 财政年份:
    2021
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
  • 批准号:
    2024409
  • 财政年份:
    2020
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
  • 批准号:
    2024435
  • 财政年份:
    2020
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
  • 批准号:
    2024615
  • 财政年份:
    2020
  • 资助金额:
    $ 28.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了