AMPS: Advanced Mathematical Algorithms for Model Reduction and Stochastic Modeling for the Emerging Power Grid
AMPS:用于新兴电网模型简化和随机建模的高级数学算法
基本信息
- 批准号:1734727
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop tools to analyze and help design robust and resilient modern power grid systems. The emergent power grid is very different from the traditional grid, which is based on technology dating back to the early 20'th century. With new technologies and regulatory policies, new challenges are arising in the design of stable power systems that can reliably deliver electric power. To tackle these challenges, mathematical and computational tools are needed to analyze these power grids with the new features. The goal of this project is to develop these mathematical and computational tools. Specifically, this project will examine model reduction, uncertainty/stochasticity, and stability, which are some of the new features that must be incorporated in the models of the modern grid. Stability will be the connecting theme in these topics since stability is required to ensure a resilient grid with reduced risks. The PI will examine (1) how synchrony in the oscillations of the grid can be used to determine coherent sets of generators and loads for accurate model reduction; (2) what are the relevant structures that must be reserved to produce accurate reduced models; (3) how to develop multilevel solvers for decentralized systems; (4) how stochasticity affects the synchrony, coherency, model reduction, and stability of the grid; and (5) how observed data can be assimilated into the stochastic models. The stochasticity will be incorporated using stochastic differential-algebraic equations. This stochasticity will be introduced using the Orstein-Uhlenbeck process that best describes the stochasticity in the components of the system.
该项目将开发工具来分析和帮助设计强大和有弹性的现代电网系统。新兴电网与传统电网有很大的不同,传统电网的技术基础可以追溯到世纪初。随着新技术和监管政策的出现,在设计能够可靠输送电力的稳定电力系统方面出现了新的挑战。为了应对这些挑战,需要数学和计算工具来分析这些具有新功能的电网。该项目的目标是开发这些数学和计算工具。 具体来说,本项目将研究模型简化,不确定性/随机性和稳定性,这些都是现代网格模型中必须包含的一些新功能。稳定性将是这些主题中的连接主题,因为稳定性是确保电网弹性和降低风险所必需的。PI将研究(1)如何利用电网振荡的同步性来确定发电机和负载的相关集合,以实现精确的模型简化;(2)必须保留哪些相关结构以生成精确的简化模型;(3)如何为分散系统开发多级求解器;(4)随机性如何影响网格的同步性、相干性、模型简化和稳定性;(5)观测数据如何被同化到随机模型中。随机性将被纳入使用随机微分代数方程。这种随机性将使用最能描述系统组成部分的随机性的Orstein-Uhlenbeck过程来介绍。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multigrid for model reduction of power grid networks
- DOI:10.1002/nla.2201
- 发表时间:2018-07
- 期刊:
- 影响因子:4.3
- 作者:Barry Lee
- 通讯作者:Barry Lee
Bringing physics into the coarse‐grid selection: Approximate diffusion distance/effective resistance measures for network analysis and algebraic multigrid for graph Laplacians and systems of elliptic partial differential equations
将物理学引入粗网格选择:用于网络分析的近似扩散距离/有效阻力测量以及用于图拉普拉斯算子和椭圆偏微分方程组的代数多重网格
- DOI:10.1002/nla.2539
- 发表时间:2023
- 期刊:
- 影响因子:4.3
- 作者:Lee, Barry
- 通讯作者:Lee, Barry
Algebraic multigrid for the nonlinear powerflow equations
- DOI:10.1002/nla.2347
- 发表时间:2020-11
- 期刊:
- 影响因子:4.3
- 作者:Barry Lee;Enrique Pereira Batista
- 通讯作者:Barry Lee;Enrique Pereira Batista
Algebraic multigrid for systems of elliptic boundary‐value problems
椭圆边界值问题系统的代数多重网格
- DOI:10.1002/nla.2303
- 发表时间:2021
- 期刊:
- 影响因子:4.3
- 作者:Lee, Barry
- 通讯作者:Lee, Barry
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barry Lee其他文献
PMU Placement for enhancing dynamic observability of a power grid
用于增强电网动态可观测性的 PMU 布局
- DOI:
10.1109/citres.2010.5619843 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
P. Du;Zhenyu Huang;R. Diao;Barry Lee;K. Anderson - 通讯作者:
K. Anderson
Asynchronous Fast Adaptive Composite-Grid Methods for Elliptic Problems: Theoretical Foundations
椭圆问题的异步快速自适应复合网格方法:理论基础
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:2.9
- 作者:
Barry Lee;S. McCormick;B. Philip;D. Quinlan - 通讯作者:
D. Quinlan
A Novel Multigrid Method for Sn Discretizations of the Mono-Energetic Boltzmann Transport Equation in the Optically Thick and Thin Regimes with Anisotropic Scattering, Part I
具有各向异性散射的光厚和薄区域中单能玻尔兹曼输运方程 Sn 离散化的新型多重网格方法,第一部分
- DOI:
10.1137/080721480 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Barry Lee - 通讯作者:
Barry Lee
On the configuration of the US Western Interconnection voltage stability boundary
论美国西部互联电压稳定边界的配置
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Y. Makarov;B. Vyakaranam;Di Wu;Barry Lee;Z. Hou;S. Elbert;Zhenyu Huang - 通讯作者:
Zhenyu Huang
A Moment-Parity Multigrid Preconditioner for the First-Order System Least-Squares Formulation of the Boltzmann Transport Equation
玻尔兹曼输运方程一阶系统最小二乘公式的矩宇称多重网格预处理器
- DOI:
10.1137/s1064827502407172 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
P. Brown;Barry Lee;T. Manteuffel - 通讯作者:
T. Manteuffel
Barry Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barry Lee', 18)}}的其他基金
Conference: 2023 NSF Algorithms for Modern Power Systems (AMPS) Workshop
会议:2023 NSF 现代电力系统算法 (AMPS) 研讨会
- 批准号:
2226640 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Exploiting the Weighted Graph Laplacian for Power Systems: High-Degree Contingency, Machine Learning, Data Assimilation, and Parallel-in-Time Integration
利用电力系统的加权图拉普拉斯:高度偶然性、机器学习、数据同化和并行时间集成
- 批准号:
2229378 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Risk and Resiliency of the Electric Power Grid: Mathematical and Statistical Challenges
电网的风险和弹性:数学和统计挑战
- 批准号:
1550666 - 财政年份:2015
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似国自然基金
面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
- 批准号:61201232
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
LTE-Advanced中继网络关键技术研究
- 批准号:61171096
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
IMT-Advanced协作中继网络中的网络编码研究
- 批准号:61040005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
- 批准号:61001116
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
- 批准号:61001071
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Mathematical Technologies for Respiratory Infection Risk Assessment and Pharmaceutical Intervention Scenario Analysis
呼吸道感染风险评估和药物干预场景分析的先进数学技术
- 批准号:
576914-2022 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Alliance Grants
Mathematical modelling and computational methods for imaging and advanced sensor technology
成像和先进传感器技术的数学建模和计算方法
- 批准号:
RGPIN-2020-04561 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Preclinical Mathematical Models for a Combined Treatment of Chemotherapy and Immunotherapy of Glioblastomas and Optimization of Advanced Treatments
胶质母细胞瘤化疗与免疫联合治疗的临床前数学模型及晚期治疗优化
- 批准号:
575972-2022 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Mathematical modelling and computational methods for imaging and advanced sensor technology
成像和先进传感器技术的数学建模和计算方法
- 批准号:
RGPIN-2020-04561 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
IRES Track II: Advanced Studies Institutes in Analysis on Fractal Spaces, Dynamical Systems and Mathematical Physics
IRES Track II:分形空间、动力系统和数学物理分析的高级研究机构
- 批准号:
1953471 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Mathematical modelling and computational methods for imaging and advanced sensor technology
成像和先进传感器技术的数学建模和计算方法
- 批准号:
RGPIN-2020-04561 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
UK-Africa Postgraduate Advanced Study Institute in Mathematical Sciences (UK-APASI)
英国-非洲数学科学研究所 (UK-APASI)
- 批准号:
EP/T00410X/1 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Research Grant
Creation of advanced method in mathematical analysis on nonlinear mathematical models of critical type
创建临界型非线性数学模型数学分析的先进方法
- 批准号:
19H05597 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Mathematical Modeling and Advanced Parameter Estimation for Polymerization Processes
聚合过程的数学建模和高级参数估计
- 批准号:
RGPIN-2015-03668 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Big data analytics and advanced mathematical modelling to enhance chromatography performance
大数据分析和先进的数学建模可提高色谱性能
- 批准号:
2247274 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Studentship