3D Printed Particle Analogs for Coarse-grained Soils: Interpretation Framework
用于粗粒土壤的 3D 打印颗粒类似物:解释框架
基本信息
- 批准号:1735732
- 负责人:
- 金额:$ 14.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns the utilization of 3D printed particle analogs for the fundamental study of coarse-grained soil behavior. These synthetic analogs will address the pervasive challenge in geotechnical engineering caused by the fact that soils are natural materials whose properties are defined by their geologic history, and whose behavior depends on dozens of variables, including particle morphology and size, gradation, and soil state. Development of an interpretation framework, consisting of normalization of the compression and shear responses based on the stiffness of the particles constituent material stiffness, will allow for quantitative study of the response of soils comprised of different materials. It will also allow for validation of results from numerical simulations (e.g. Discrete Element Modeling, DEM). This research: (i) provides the ability to systematically and independently control particle properties of soil analogs, which can transform current research capabilities to study aspects of soil behavior that are important for many applications, such as seepage, pollutant transport, bacterial and fungal growth, erosion, bearing capacity, interface friction, and earth pressures, (ii) facilitates the trans-disciplinary transfer of knowledge among researchers from different disciplines within engineering and the sciences, such as chemical, mechanical and material science engineering and physics, who investigate phenomena in different granular materials such as soils, powders, and grains, (iii) promotes use of 3D printing in research to transform current experimental research techniques within geotechnical engineering, and (iv) increases the involvement of Hispanic students through the entire educational track by training teachers from local middle schools and providing research opportunities to undergraduate students. Qualitative understanding of soil behavior has been achieved by many researchers through experiments on different soils or soil analogs, Discrete Element Modeling (DEM) simulations, or advanced imaging techniques. The two major barriers that have deterred the construction of quantitative understanding using these tools are: (i) the inability of current experimental methods to systematically change one characteristic of natural soil particles, while keeping the others unchanged (affecting interpretation of studies on natural soils), and (ii) the lack of a framework that allows for study of behaviors independently from differences in constituent material properties (affecting interpretation of studies on soil analogs). The hypothesis of this research project is that the response of 3D printed soil analogs can provide direct and quantitative understanding of the response of natural soils. The effects of particle contact deformation are quantified in particle- and element-scale 1D compression tests, and the coupled effect of particle contact and soil skeleton deformation are characterized in triaxial compression shear tests. These experimental insights, in combination with a stiffness-based normalization scheme that accounts for differences in constituent material properties, comprise a framework that allows for direct comparison of the response of natural and analog soils that is only influenced by particle characteristics and soil state. The developed 3D printed soil analogs and interpretation framework will allow for systematic and independent prescription of particle shape, surface roughness, and size for the detailed study of the behavior of coarse-grained soils. This will advance the understanding of the influence of particle constituent material stiffness on the compression and shear response of soils at the particle- and element-scales, and incorporate the effect of particle stiffness on the framework of critical state soil mechanics.
该项目涉及利用3D打印颗粒类似物进行粗粒土行为的基础研究。 这些合成类似物将解决岩土工程中普遍存在的挑战,因为土壤是天然材料,其性质由其地质历史定义,其行为取决于数十个变量,包括颗粒形态和大小,级配和土壤状态。 解释框架的开发,包括基于颗粒组成材料刚度的压缩和剪切响应的归一化,将允许对由不同材料组成的土壤的响应进行定量研究。 它还将允许验证数值模拟(例如离散元建模,DEM)的结果。 这项研究:(i)提供系统地和独立地控制土壤类似物的颗粒性质的能力,这可以改变当前的研究能力,以研究对许多应用重要的土壤行为的方面,例如渗流、污染物运输、细菌和真菌生长、侵蚀、承载能力、界面摩擦和土压力,(ii)促进工程和科学领域内不同学科的研究人员之间的跨学科知识转移,如化学、机械和材料科学工程和物理学,研究不同颗粒材料(如土壤、粉末和颗粒)中的现象,(iii)促进3D打印在研究中的使用,以改变岩土工程中当前的实验研究技术,以及(iv)通过培训当地中学的教师和为本科生提供研究机会,增加西班牙裔学生在整个教育轨道上的参与。许多研究人员通过对不同土壤或土壤类似物的实验、离散元模型(DEM)模拟或先进的成像技术,对土壤行为有了定性的了解。 阻碍使用这些工具构建定量理解的两个主要障碍是:(i)目前的实验方法无法系统地改变天然土壤颗粒的一个特性,同时保持其他特性不变(影响对自然土壤研究的解释),以及(ii)缺乏一个框架,该框架允许独立于组成材料特性的差异来研究行为(影响对土壤类似物研究的解释)。 该研究项目的假设是,3D打印土壤类似物的响应可以提供对天然土壤响应的直接和定量的理解。 颗粒接触变形的影响在颗粒和元素尺度的一维压缩试验中进行了量化,颗粒接触和土骨架变形的耦合效应在三轴压缩剪切试验中进行了表征。这些实验的见解,结合刚度为基础的归一化方案,占组成材料特性的差异,包括一个框架,允许直接比较自然和模拟土壤的反应,只受颗粒特性和土壤状态。开发的3D打印土壤类似物和解释框架将允许系统和独立地规定颗粒形状,表面粗糙度和尺寸,以详细研究粗粒土壤的行为。 这将促进颗粒组成材料刚度对颗粒和单元尺度上的土壤的压缩和剪切响应的影响的理解,并将颗粒刚度的影响纳入临界状态土壤力学的框架。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
https://doi.org/10.1061/9780784482803.017
https://doi.org/10.1061/9780784482803.017
- DOI:10.1061/9780784482803.017
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ahmed, Sharif A;Martinez, Alejandro
- 通讯作者:Martinez, Alejandro
Triaxial compression behavior of 3D printed and natural sands
- DOI:10.1007/s10035-021-01143-0
- 发表时间:2021-11-01
- 期刊:
- 影响因子:2.4
- 作者:Ahmed, Sheikh Sharif;Martinez, Alejandro
- 通讯作者:Martinez, Alejandro
Framework for Modeling Coarse-Grained Soil Behavior Using 3D Printed Soil Analogs
使用 3D 打印土壤类似物模拟粗粒土壤行为的框架
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Martinez, A;Ahmed, S.S.
- 通讯作者:Ahmed, S.S.
Effects of Particle Shape on the Shear Wave Velocity and Shear Modulus of 3D Printed Sand Analogs
- DOI:10.5802/ogeo.9
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:S. S. Ahmed-S.;Alejandro Martinez
- 通讯作者:S. S. Ahmed-S.;Alejandro Martinez
Modeling the mechanical behavior of coarse-grained soil using additive manufactured particle analogs
- DOI:10.1007/s11440-020-01007-6
- 发表时间:2020-06-28
- 期刊:
- 影响因子:5.7
- 作者:Ahmed, Sheikh Sharif;Martinez, Alejandro
- 通讯作者:Martinez, Alejandro
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alejandro Martinez其他文献
Analysis of the Self-Penetration Process of a Bio-Inspired In Situ Testing Probe
仿生原位测试探针的自渗透过程分析
- DOI:
10.1061/9780784482834.025 - 发表时间:
2020 - 期刊:
- 影响因子:3.4
- 作者:
Yuyan Chen;A. Khosravi;Alejandro Martinez;J. DeJong;D. Wilson - 通讯作者:
D. Wilson
Evolution of heterogeneous mechanisms of acquired resistance to cetuximab-based therapy in colorectal cancer.
结直肠癌对西妥昔单抗治疗的获得性耐药异质机制的演变。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
C. Montagut;B. Bellosillo;I. Gonzalez;Alejandro Martinez;A. Dalmases;M. Iglesias;J. Vidal;M. Salido;Mar García;M. Busto;G. Aguilar;E. Moragón;B. Espinet;S. Serrano;A. Rovira;J. Bellmunt;J. Albanell - 通讯作者:
J. Albanell
3D Printed Soil Analogs for Modeling of Coarse-Grained Soil Behavior
用于粗粒土壤行为建模的 3D 打印土壤类似物
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
S. S. Ahmed;Alejandro Martinez - 通讯作者:
Alejandro Martinez
Interface response-based soil classification framework
基于界面响应的土壤分类框架
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
G. Hebeler;Alejandro Martinez;J. D. Frost - 通讯作者:
J. D. Frost
First Human Use of Radio-Frequency Based, Wireless Pressure Sensor for Congestive Heart Failure Monitoring of Pulmonary Artery Pressure
- DOI:
10.1016/j.cardfail.2006.06.188 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:
- 作者:
Pablo F. Castro;Roberto Concepcion;Alejandro Martinez;Marcela Ferrada;Sergio Perrone - 通讯作者:
Sergio Perrone
Alejandro Martinez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alejandro Martinez', 18)}}的其他基金
GOALI/Collaborative Research: Novel and Efficient Seabed Ring Anchor for Omnidirectional Loading
GOALI/合作研究:用于全向加载的新型高效海底环锚
- 批准号:
1936939 - 财政年份:2020
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
CAREER: Soil Penetration through Bioinspired Stress State Manipulation
职业:通过仿生应力状态操纵进行土壤渗透
- 批准号:
1942369 - 财政年份:2020
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
International Workshop on Bio-Inspired Geotechnics; Pacific Grove, California; May 19-22, 2019
国际仿生岩土工程研讨会;
- 批准号:
1821029 - 财政年份:2018
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
相似海外基金
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 14.96万 - 项目类别:
Studentship
Reverse Design of Tuneable 4D Printed Materials for Soft Robotics
用于软体机器人的可调谐 4D 打印材料的逆向设计
- 批准号:
DE240100960 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Discovery Early Career Researcher Award
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
- 批准号:
2333306 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Cooperative Agreement
Cutting-edge bio-material for 3D printed bone fixation plates
用于 3D 打印骨固定板的尖端生物材料
- 批准号:
24K20065 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RII Track-4:NSF:Planetary Robotic Construction on the Moon and Mars Using 3D Printed Waterless Concrete
RII Track-4:NSF:使用 3D 打印无水混凝土在月球和火星上进行行星机器人施工
- 批准号:
2327469 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
Empowering Wearable Smart Devices with 3D Printed Energy Storage
通过 3D 打印能量存储为可穿戴智能设备提供支持
- 批准号:
DP240100892 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Discovery Projects
Manufacturing Nanostructured Metallic Materials via 3D Printed Polymers
通过 3D 打印聚合物制造纳米结构金属材料
- 批准号:
DE240100917 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Discovery Early Career Researcher Award
SBIR Phase I: CAS: Biomimetic 3D Printed Metal Mold to Mass Produce Dry-Pressed, Modular, Biophilic Concrete Reef Substrate
SBIR 第一阶段:CAS:仿生 3D 打印金属模具,用于批量生产干压、模块化、亲生物混凝土珊瑚礁基底
- 批准号:
2334667 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
CAREER: Developing Ultrasound-Programmable 3D-Printed Biomaterials for Spatiotemporal Control of Gene Delivery
职业:开发用于基因传递时空控制的超声波可编程 3D 打印生物材料
- 批准号:
2339254 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track M: Biofilm-based Corrosion Control using 3D Printed Biotechnology
NSF 融合加速器轨道 M:使用 3D 打印生物技术进行基于生物膜的腐蚀控制
- 批准号:
2344389 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant














{{item.name}}会员




