AMPS: Uncertainty Quantification for Stochastic Analysis of Electrical Power Networks

AMPS:电力网络随机分析的不确定性量化

基本信息

  • 批准号:
    1736392
  • 负责人:
  • 金额:
    $ 22.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The reliable functioning of the electric power grid forms a critical part of a modern industrial country. The failure to maintain the reliability of the grid leads to significant societal, national security problems and environmental costs. With the ever-increasing use of intermittent power sources such as wind, solar, battery, along with new types of disruptions that are arising, the overall reliability and stability of the electric grid is threatened. The proposed research will have an impact on understanding the stability of the electric grid given these intermittent power sources. This can lead to significant cost savings based on modeling, in addition to a direct positive impact on the environment, and a more stable civil society as well as economy.With the ever-increasing presence of intermittent (stochastic) generators (wind, solar, battery, etc.) and loads, it is difficult to integrate these power fluctuations into an electric grid while maintaining reliability and safety. This is a hard problem - in particular it is high dimensional, non-Gaussian, and it is not feasible with current computational resources to obtain sufficient predictive accuracy. The aim of this project is the development of mathematically rigorous numerical methods for computing the statistics of a high dimensional Quantity of Interest (QoI) of the power flow. In particular, the investigators propose: i) To derive stochastic analytic regularity of the power flow with respect to the topology of the electric grid, power generation and load uncertainties to help estimate convergence rates of sparse grid type methods. ii) To develop a multi-level sparse grid reproducing kernel method that is adapted to the stochastic regularity of the electric grid topology. This method will be used to compute the statistics of the stochastic (transient) power flow. iii) If resources permit, as an alternative mitigation strategy for very large dimensional problems, the investigators propose a splitting method of the QoI into non-linear (large deviation) and linear (small deviation) components. The high dimensional small deviations are approximated with a perturbation method with at most quadratic computational cost in dimension. The large deviations are approximated with a multi-level sparse grid reproducing kernel method. This work proposes to significantly improve the state of the art in high dimensional UQ methods that are adapted to topologies such as those of the electric grid. This is a very relevant topic since the the application and theory of UQ methods to electric grids are in their infancy. A National Academy of Sciences report from last year underscores the current importance of this issue.
电网的可靠运行是现代工业国家的关键组成部分。 未能保持电网的可靠性会导致重大的社会、国家安全问题和环境成本。 随着诸如风能、太阳能、电池等间歇性电源的不断增加的使用,沿着出现新类型的中断,电网的整体可靠性和稳定性受到威胁。 拟议的研究将对理解这些间歇性电源的电网稳定性产生影响。这可以在建模的基础上显著节省成本,并对环境产生直接的积极影响,以及更稳定的公民社会和经济。随着间歇性(随机)发电机(风能,太阳能,电池等)的不断增加,发电机的数量也在不断增加。和负载,很难在保持可靠性和安全性的同时将这些功率波动整合到电网中。这是一个困难的问题-特别是它是高维的,非高斯的,并且用当前的计算资源来获得足够的预测精度是不可行的。 该项目的目的是数学上严格的数值方法的发展,用于计算的高维感兴趣的量(QoI)的潮流的统计。特别是,调查人员提出:i)推导出随机分析规律的电力潮流的拓扑结构的电网,发电和负载的不确定性,以帮助估计稀疏网格类型的方法的收敛速度。 ii)发展一种适合于电网拓扑随机规律性的多层稀疏网格再生核方法。这种方法将被用来计算随机(暂态)潮流的统计。 iii)如果资源允许,作为非常大维度问题的替代缓解策略,研究人员提出了将QoI分为非线性(大偏差)和线性(小偏差)分量的分割方法。高维的小偏差近似的扰动方法与最多的二次计算成本的维度。对大偏差采用多层稀疏网格再生核方法进行逼近。 这项工作提出了显着改善的国家的最先进的高维UQ方法,适用于拓扑结构,如电网。这是一个非常相关的主题,因为UQ方法在电网中的应用和理论尚处于起步阶段。美国国家科学院去年的一份报告强调了这一问题目前的重要性。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A hybrid collocation-perturbation approach for PDEs with random domains
随机域偏微分方程的混合配置扰动方法
  • DOI:
    10.1007/s10444-021-09859-6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Castrillón-Candás, Julio E.;Nobile, Fabio;Tempone, Raúl F.
  • 通讯作者:
    Tempone, Raúl F.
Anomaly detection: A functional analysis perspective
异常检测:功能分析视角
  • DOI:
    10.1016/j.jmva.2021.104885
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Castrillón-Candás, Julio E.;Kon, Mark
  • 通讯作者:
    Kon, Mark
Analytic regularity and stochastic collocation of high-dimensional Newton iterates
高维牛顿迭代的解析正则性与随机配置
  • DOI:
    10.1007/s10444-020-09791-1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Castrillón-Candás, Julio E.;Kon, Mark
  • 通讯作者:
    Kon, Mark
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Kon其他文献

157 - Reporting of coronary artery calcification in targeted lung health check: Bradford and Craven and North Kirklees programmes
157 - 目标肺部健康检查中冠状动脉钙化的报告:布拉德福德和克雷文以及北基尔利计划
  • DOI:
    10.1016/s0169-5002(23)00584-6
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    4.400
  • 作者:
    LiJi Ng;Beth Marjoram;Lucy Ashton;Graham Bowmer;Tracy Hiley;Jon Martin;Phillip Marjoram;Mark Kon;Christopher Marshall;Leanne Cheyne
  • 通讯作者:
    Leanne Cheyne
Right ventricular function after pulmonary autograft replacement of the aortic valve.
自体肺动脉瓣置换主动脉瓣后的右心室功能。
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    G. Carr;Mark Kon;T. Koh;Sally Glennan;Francis D. Ferdinand;Anthony C. De Souza;John R. Pepper;D. Pennell;Derek G. Gibson;Magdi H. Yacoub
  • 通讯作者:
    Magdi H. Yacoub

Mark Kon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Kon', 18)}}的其他基金

Complexity of Neural Networks for Applications
神经网络应用的复杂性
  • 批准号:
    9720145
  • 财政年份:
    1997
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Wavelets and their Applications to Neural Network Theory, Vision, and Image Processing
数学科学:小波及其在神经网络理论、视觉和图像处理中的应用
  • 批准号:
    9410859
  • 财政年份:
    1994
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Complexity Theoretic Applications of Functional Analysis
数学科学:泛函分析的复杂性理论应用
  • 批准号:
    9109042
  • 财政年份:
    1992
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Functional Analytic and ProbabilisticProblems in Mathematical Physics
数学科学:数学物理中的泛函分析和概率问题
  • 批准号:
    8509458
  • 财政年份:
    1985
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant
Probabilistic Results in Mathematical Quantum Physics
数学量子物理中的概率结果
  • 批准号:
    8003407
  • 财政年份:
    1980
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant

相似海外基金

UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
  • 批准号:
    EP/Y000145/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Research Grant
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
  • 批准号:
    EP/X041093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Research Grant
Conference: Power of Diversity in Uncertainty Quantification (PoD UQ)
会议:不确定性量化中多样性的力量 (PoD UQ)
  • 批准号:
    2403506
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
  • 批准号:
    2340586
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Continuing Grant
UQ4FM: Uncertainty quantification algorithms for flood modelling
UQ4FM:洪水建模的不确定性量化算法
  • 批准号:
    EP/X040941/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Research Grant
Climate Tipping Points: Uncertainty-aware quantification of Earth system tipping potential from observations and models and assessment of associated climatic, ecological, and socioeconomic impacts
气候临界点:通过观测和模型以及对相关气候、生态和社会经济影响的评估,对地球系统潜在的不确定性进行量化
  • 批准号:
    10090795
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    EU-Funded
Integrated Framework for Cooperative 3D Printing: Uncertainty Quantification, Decision Models, and Algorithms
协作 3D 打印的集成框架:不确定性量化、决策模型和算法
  • 批准号:
    2329739
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant
Enhancing Ensemble Diversity in Neural Ensemble Search for Uncertainty Quantification
增强神经集成搜索中的集成多样性以实现不确定性量化
  • 批准号:
    2872703
  • 财政年份:
    2023
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Studentship
QUMPHY - Uncertainty quantification for machine learning models applied to photoplethysmography signals
QUMPHY - 应用于光电体积描记信号的机器学习模型的不确定性量化
  • 批准号:
    10084961
  • 财政年份:
    2023
  • 资助金额:
    $ 22.93万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了