AMPS: Dynamics-Aware Algorithms for Real-Time Structured Fault Detection in Power Systems
AMPS:用于电力系统实时结构化故障检测的动态感知算法
基本信息
- 批准号:1736448
- 负责人:
- 金额:$ 23.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The U.S. power grid is in the midst of its most fundamental transformation since its inception. Spurred by the need to reduce emissions, the electric generation mix is drifting away from traditional, reliable sources, towards volatile and uncertain renewable sources. Simultaneously, there is an unprecedented increase in the quantity, quality, and variety of sensing and monitoring devices. From phasor measurement units (PMUs) to smart meters, the power grid is soon to experience an overflow of data that has the potential of providing an extraordinary amount of information at the transmission and distribution levels. However, despite this burst in data availability, there is still a lack of analytic tools that can leverage the newly available telemetry to help operators face the paradigm shift that renewable sources pose. Moreover, the modernization of monitoring systems that use cyber resources to transmit information for processing and analysis begets new challenges and threats. Without the proper tools to correct and validate the collected data, undetected errors or maliciously modified data can mislead operators and bring the system towards blackouts. This work addresses these challenges by developing novel algorithmic tools that take into account intrinsic properties of the measurements.This project develops a theoretical framework and associated algorithms that can reliably utilize the newly available measurements to provide useful real-time information that can allow operators to use resources better and react to unforeseen events. More precisely, the PIs seek to combine tools from statistics, dynamical systems, and optimization to develop a data analytic approach to identify and prevent cyber-physical attacks, correct missing, and corrupted data, identify network structural changes, and recognize abrupt local changes in supply- demand imbalance. This research is unique within the existing the literature in power system monitoring in several ways. Firstly, it acknowledges and leverages the fact that there are spatial and temporal correlations between the measurements generated by the underlying dynamical system (the power grid). Secondly, it builds a unifying modeling framework that can jointly capture how grid measurements are affected by (a) topology changes in the network, (b) abrupt changes in supply or demand, and (c) measurement errors. Thirdly, it develops a novel algorithmic framework that exploits structural sparsity properties of the different network disturbances to discriminate and identify the source of a given grid transient behavior. The research will also build a large-scale simulation testbed to assess the accuracy and scalability of the designed algorithms and in this way bridge the gap between theoretical models and actual power systems.
自成立以来,美国的电网正处于其最根本的转型之中。由于需要减少排放的需求,发电混合物从传统,可靠的来源逐渐流动到挥发性和不确定的可再生能源。同时,传感和监测设备的数量,质量和种类量存在前所未有的增加。从相量测量单元(PMU)到智能电表,功率电网很快就会体验到具有在传输和分配水平上提供大量信息的数据溢出。但是,尽管数据可用性发生了这种情况,但仍然缺乏分析工具,可以利用新近可用的遥测方法来帮助操作员面对可再生资源构成的范式变化。此外,使用网络资源传输信息进行处理和分析的监视系统的现代化会带来新的挑战和威胁。如果没有适当的工具来纠正和验证收集的数据,未发现错误或恶意修改的数据可能会误导运算符并将系统带入停电。这项工作通过开发新的算法工具来解决这些挑战,这些工具考虑了测量的内在属性。本项目开发了一个理论框架和相关算法,这些算法可以可靠地利用新可用的测量值来提供有用的实时信息,以便可以使运营商更好地利用资源来更好地利用资源并为统一事件做出反应。更准确地说,PI试图将工具从统计,动力学系统和优化中结合起来,以开发数据分析方法,以识别和防止网络物理攻击,正确的缺失和损坏的数据,识别网络结构性变化,并识别供应不平衡的局部局部变化。这项研究在电力系统中现有文献中是独一无二的。首先,它承认并利用了一个事实,即基础动力学系统(功率网格)产生的测量之间存在空间和时间相关。其次,它构建了一个统一的建模框架,可以共同捕获网格测量如何受(a)网络拓扑变化的影响,(b)供应或需求的突然变化,以及(c)测量错误。第三,它开发了一种新型的算法框架,该算法框架利用了不同网络干扰的结构稀疏性能,以区分和识别给定的网格瞬态行为的来源。该研究还将建立一个大规模的模拟测试台,以评估设计算法的准确性和可扩展性,并以此方式弥合理论模型和实际功率系统之间的差距。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global Analysis of Synchronization Performance for Power Systems: Bridging the Theory-Practice Gap
- DOI:10.1109/tac.2019.2942536
- 发表时间:2019-05
- 期刊:
- 影响因子:6.8
- 作者:F. Paganini;Enrique Mallada
- 通讯作者:F. Paganini;Enrique Mallada
Grid-Forming Frequency Shaping Control for Low-Inertia Power Systems
低惯量电力系统的电网形成频率整形控制
- DOI:10.23919/acc50511.2021.9482678
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Jiang, Yan;Bernstein, Andrey;Vorobev, Petr;Mallada, Enrique
- 通讯作者:Mallada, Enrique
Sparse Recovery over Graph Incidence Matrices
- DOI:10.1109/cdc.2018.8619666
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:Mengnan Zhao;M. Kaba;R. Vidal;Daniel P. Robinson;Enrique Mallada
- 通讯作者:Mengnan Zhao;M. Kaba;R. Vidal;Daniel P. Robinson;Enrique Mallada
Learning to be safe, in finite time
- DOI:10.23919/acc50511.2021.9482829
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Agustin Castellano;J. Bazerque;Enrique Mallada
- 通讯作者:Agustin Castellano;J. Bazerque;Enrique Mallada
Understanding the inefficiency of security-constrained economic dispatch
理解安全约束经济调度的低效率
- DOI:10.1109/cdc.2017.8263947
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Hajiesmaili, Mohammad H.;Cai, Desmond;Mallada, Enrique
- 通讯作者:Mallada, Enrique
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Enrique Mallada其他文献
A Market Mechanism for a Two-stage Settlement Electricity Market with Energy Storage
储能两级结算电力市场的市场机制
- DOI:
10.48550/arxiv.2405.01442 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
R. Bansal;Enrique Mallada;Patricia Hidalgo - 通讯作者:
Patricia Hidalgo
Distributed network synchronization: The Internet and electric power grids
- DOI:
- 发表时间:
2014-01 - 期刊:
- 影响因子:0
- 作者:
Enrique Mallada - 通讯作者:
Enrique Mallada
Coherence and Concentration in Tightly-Connected Networks
紧密连接网络中的一致性和集中度
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Hancheng Min;Enrique Mallada - 通讯作者:
Enrique Mallada
Optimal Congestion Control with Multipath Routing Using TCP-FAST and a Variant of RIP
使用 TCP-FAST 和 RIP 变体的多路径路由的最佳拥塞控制
- DOI:
10.1007/978-3-540-72709-5_22 - 发表时间:
2007 - 期刊:
- 影响因子:0.9
- 作者:
Enrique Mallada;F. Paganini - 通讯作者:
F. Paganini
Phase-Coupled Oscillators with Plastic Coupling: Synchronization and Stability
具有塑料耦合的相耦合振荡器:同步和稳定性
- DOI:
10.1109/tnse.2016.2605096 - 发表时间:
2016 - 期刊:
- 影响因子:6.6
- 作者:
Andrey Gushchin;Enrique Mallada;A. Tang - 通讯作者:
A. Tang
Enrique Mallada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Enrique Mallada', 18)}}的其他基金
Collaborative Research: CPS: Medium: Enabling DER Integration via Redesign of Information Flows
协作研究:CPS:中:通过重新设计信息流实现 DER 集成
- 批准号:
2136324 - 财政年份:2021
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
CAREER: Control, Optimization, and Market Design for Efficient and Reliable Integration of Renewable Energy Sources in Electric Power Systems
职业:电力系统中可再生能源高效可靠集成的控制、优化和市场设计
- 批准号:
1752362 - 财政年份:2018
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
An Optimization Decomposition Framework for Principled Multi-Timescale Market Design and Co-Optimization
有原则的多时间尺度市场设计和协同优化的优化分解框架
- 批准号:
1711188 - 财政年份:2017
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
相似国自然基金
神经元模型中混合模式振荡诱导机制的动力学研究
- 批准号:12302069
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
- 批准号:12304175
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
柔性钙钛矿室内光伏器件中“微-宏观”应力调谐及其载流子复合动力学研究
- 批准号:62305261
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
摇摆桥梁三维动力学行为及地震响应规律研究
- 批准号:52308494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
桃果实采后冷害质地劣变的细胞壁果胶动力学机制研究
- 批准号:32302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Control-Aware System Identification of Heterogenous Multiscale Brain Network Dynamics
职业:异构多尺度脑网络动力学的控制感知系统识别
- 批准号:
2239654 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
Development of a socially aware crowd flow model and control of crowd flow based on reinforcement learning
基于强化学习的社会意识人群流动模型的开发和人群流动控制
- 批准号:
22KJ2310 - 财政年份:2023
- 资助金额:
$ 23.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Power Systems Dynamics from Real-Time Data: Modeling, Inference, and Stability-Aware Optimization
协作研究:实时数据的电力系统动力学:建模、推理和稳定性感知优化
- 批准号:
2150571 - 财政年份:2022
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
Collaborative Research: Power Systems Dynamics from Real-Time Data: Modeling, Inference, and Stability-Aware Optimization
协作研究:实时数据的电力系统动力学:建模、推理和稳定性感知优化
- 批准号:
2150596 - 财政年份:2022
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: LARGE: Dynamics and Security Aware Predictive Spectrum Sharing with Active and Passive Users
协作研究:SWIFT:大型:与主动和被动用户进行动态和安全感知预测频谱共享
- 批准号:
2030249 - 财政年份:2021
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant