CAREER: Control-Aware System Identification of Heterogenous Multiscale Brain Network Dynamics

职业:异构多尺度脑网络动力学的控制感知系统识别

基本信息

  • 批准号:
    2239654
  • 负责人:
  • 金额:
    $ 54.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) project aims to develop mathematical models of the human brain, with an eye on laying the foundation for their implementation in clinical treatments. Treatments of neurological and psychiatric disorders impose over $1 trillion annually on the US population alone. A large body of literature on mathematical modeling in neuroscience had little impact on clinical treatments because most models either rely on simplifying assumptions or use machine learning methods that obscure the link to the underlying biology. This research will develop a new category of mathematical models for the brain that are at once biologically meaningful and interpretable, without relying on simplifying assumptions. These models will be rooted in engineering approaches that combine data-driven and nonlinear dynamical systems methods. The research is tightly integrated with a diverse and solid body of educational activities targeted towards high school, undergraduate, and graduate students at UCR, the local Inland Empire community, and across the globe.This project will develop data-driven models of the human brain that rigorously incorporate three critical but often ignored aspects of biological neural networks: (i) spanning across multiple scales, (ii) heterogeneity, and (iii) response to neuromodulation. The first thrust will be achieved through data-driven modeling of feedforward and feedback interactions between neural dynamics at different spatial scales (neurons, neural populations, and brain regions), that move beyond simple macroscopic readouts of microscopic dynamics and enhance our understanding of how macroscopic dynamics emerge from, and feed back into the smaller scales. The second thrust will develop structurally heterogeneous brain models that incorporate data of brain heterogeneities in nonlinearity, dimensionality, and neural code across cortical and subcortical regions. The third thrust will generate a data-driven, sample-efficient framework for modeling the effects of deep brain stimulation at the level of the whole-brain network, thus moving beyond local predictions based on first principle modeling of electromagnetic diffusion. The expected outcomes are potentially transformative models and modeling techniques that provide the neuroscience community with solid and clinically translatable tools for the design of neuromodulation, while also significantly increasing our understanding of the multiscale, heterogeneous, and input-driven dynamics of the human brain.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师的早期职业发展(职业)项目旨在开发人脑的数学模型,并着眼于为其在临床治疗中实施的基础奠定基础。神经和精神疾病的治疗仅每年就将超过1万亿美元施加在美国人群中。关于神经科学中数学建模的大量文献对临床治疗几乎没有影响,因为大多数模型要么依赖于简化的假设,要么使用机器学习方法来掩盖与基本生物学的联系。这项研究将为大脑开发新的数学模型类别,这些模型立即在生物学上有意义和可解释,而无需简化假设。这些模型将植根于结合数据驱动和非线性动力学系统方法的工程方法。 这项研究与针对高中,本科和研究生的各种各样的教育活动紧密整合在一起神经调节。第一个推力将通过数据驱动的模型来实现,在不同的空间尺度(神经元,神经群体和大脑区域)之间进行进发和反馈相互作用的模型,它们超越了简单的显微镜动力学宏观读数,并增强了我们对宏观动力学从较小尺度中的出现方式的理解。第二个推力将开发结构上异质的大脑模型,这些模型将跨皮质和皮层下区域的非线性,维度和神经代码中的大脑异质性数据结合在一起。第三个推力将生成一个数据驱动的样品效率框架,用于对整个脑网络水平的深脑刺激的影响进行建模,从而超越基于电磁扩散的第一原理建模的局部预测。 The expected outcomes are potentially transformative models and modeling techniques that provide the neuroscience community with solid and clinically translatable tools for the design of neuromodulation, while also significantly increasing our understanding of the multiscale, heterogeneous, and input-driven dynamics of the human brain.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review 标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal decoding of neural dynamics occurs at mesoscale spatial and temporal resolutions
  • DOI:
    10.3389/fncel.2024.1287123
  • 发表时间:
    2024-02-14
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Samiei,Toktam;Zou,Zhuowen;Nozari,Erfan
  • 通讯作者:
    Nozari,Erfan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erfan Nozari其他文献

Stability Analysis of Complex Networks with Linear-Threshold Rate Dynamics
具有线性阈值速率动态的复杂网络的稳定性分析
Heterogeneity of Central Nodes Explains the Benefits of Time-Varying Control in Complex Dynamical Networks
中心节点的异质性解释了复杂动态网络中时变控制的好处
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erfan Nozari;F. Pasqualetti;J. Cortés
  • 通讯作者:
    J. Cortés
On the Linearizing Effect of Spatial Averaging in Large-Scale Populations of Homogeneous Nonlinear Systems
齐次非线性系统大规模群体中空间平均的线性化效应
Macroscopic resting-state brain dynamics are best described by linear models
宏观静息态大脑动力学最好用线性模型来描述
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    28.1
  • 作者:
    Erfan Nozari;Maxwell A. Bertolero;J. Stiso;Lorenzo Caciagli;Eli J. Cornblath;Xiaosong He;Arun S Mahadevan;George J Pappas;Dani S. Bassett
  • 通讯作者:
    Dani S. Bassett
Network Identification With Latent Nodes via Autoregressive Models
通过自回归模型进行潜在节点的网络识别

Erfan Nozari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

高马赫数发动机密封界面液膜急变跨速汽化机理与型槽热平衡控制设计
  • 批准号:
    52375212
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于矩阵方法的电价博弈分析与控制策略研究
  • 批准号:
    62303170
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
  • 批准号:
    52377215
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
分布式电驱动智能车辆主动交互机理及控制机制研究
  • 批准号:
    52372377
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向在轨大型结构的空间机器人多机协同接管控制方法研究
  • 批准号:
    52305036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 54.82万
  • 项目类别:
    Standard Grant
CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
  • 批准号:
    2238424
  • 财政年份:
    2023
  • 资助金额:
    $ 54.82万
  • 项目类别:
    Standard Grant
CAREER: Socially-Aware Control of Autonomy: Reshaping Urban Mobility in Traffic Networks with Mixed Vehicle Autonomy
职业:具有社会意识的自主控制:通过混合车辆自主重塑交通网络中的城市交通
  • 批准号:
    2145134
  • 财政年份:
    2022
  • 资助金额:
    $ 54.82万
  • 项目类别:
    Continuing Grant
CAREER: Privacy-Aware Collaborative Sensing and Control for Cloud-Enabled Automotive Vehicles
职业:支持云的汽车的隐私感知协作传感和控制
  • 批准号:
    2045436
  • 财政年份:
    2021
  • 资助金额:
    $ 54.82万
  • 项目类别:
    Standard Grant
CAREER: Enabling grid-aware aggregation and real-time control of distributed energy resources in electric power distribution systems
职业:实现配电系统中分布式能源的网格感知聚合和实时控制
  • 批准号:
    2047306
  • 财政年份:
    2021
  • 资助金额:
    $ 54.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了