ATD: A Statistical Geo-Enabled Dynamic Human Network Analysis
ATD:统计地理支持的动态人类网络分析
基本信息
- 批准号:1737885
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently, new tracking and sensor technologies such as the Global Positioning System (GPS) have been deployed on mobile objects to collect their tracking position with high spatio-temporal resolution. The availability of these massive amounts of tracking data brings great opportunities to many application fields that rely on human movement knowledge. However, the size and the complex spatial temporal dynamic nature of the data also impose challenges for statistical modeling and computation. There is a pressing need to develop computationally efficient quantitative models to handle massive spatial temporal human trajectory data. This project combines theoretical methods and computational approaches to develop novel statistical models, along with efficient algorithms, to meet the increasing demand of efficient analytical tools for massive human trajectory data. The project has broad impact on multiple interdisciplinary fields. The results can be applied to a wide range of practical and important problems including military and national security operations, urban planning, transportation management, traffic forecasting, public health, and social behavioral studies.The increasing use of GPS and other location-aware devices has led to an increasing amount of available human trajectory data at high spatial temporal resolution. Analysis of such data provides invaluable information for many important research problems in different fields. This project will focus on the following research thrusts. First, a new class of trajectory models at the individual level will be developed to describe individual movement behavior in both space and time. With the use of this method, trajectory data is denoised and compressed by a segmented representation with different homogeneous movement states within each segment. In addition, a spatio-temporal point process model is developed to recognize important and complex movement patterns from the segmented trajectories. Extensions beyond the individual trajectory model are then pursued to develop a new class of population level trajectory models that involve a latent dynamic network to describe interactions among individual movements in space and time. Both individual and population trajectory models are carefully designed to allow scalable parallel and online inference algorithms for near real time efficient computations. Finally, the developed methods are used to solve a problem in urban planning with human movement data collected from GPS.
最近,全球定位系统(GPS)等新的跟踪和传感器技术被部署在移动对象上,以获取高时空分辨率的跟踪位置。这些海量跟踪数据的可获得性为许多依赖于人体运动知识的应用领域带来了巨大的机遇。然而,数据的大小和复杂的时空动态性质也给统计建模和计算带来了挑战。迫切需要开发计算高效的定量模型来处理海量的时空人体轨迹数据。该项目将理论方法和计算方法相结合,开发新的统计模型和高效的算法,以满足对海量人体轨迹数据日益增长的高效分析工具的需求。该项目涉及多个跨学科领域,影响广泛。研究结果可广泛应用于军事和国家安全行动、城市规划、交通管理、交通预测、公共卫生和社会行为研究等实际和重要的问题。GPS和其他位置感知设备的日益使用导致了越来越多的高时空分辨率的可用人体轨迹数据。对这些数据的分析为不同领域的许多重要研究问题提供了宝贵的信息。本项目将重点研究以下几个方面的工作。首先,在个体层面建立一类新的轨迹模型来描述个体在空间和时间上的运动行为。利用这种方法,轨迹数据通过在每个分段内具有不同均匀运动状态的分段表示来去噪和压缩。此外,建立了一个时空点过程模型,从分段的轨迹中识别出重要和复杂的运动模式。然后,在个体轨迹模型的基础上进行扩展,以发展一类新的种群水平轨迹模型,该模型涉及一个潜在的动态网络来描述个体在空间和时间上的运动之间的相互作用。个体和群体轨迹模型都经过精心设计,以支持可扩展的并行和在线推理算法,以实现近乎实时的高效计算。最后,利用GPS采集的人体运动数据,将所提出的方法用于解决城市规划中的问题。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial Homogeneity Pursuit of Regression Coefficients for Large Datasets
- DOI:10.1080/01621459.2018.1529595
- 发表时间:2019-04-10
- 期刊:
- 影响因子:3.7
- 作者:Li, Furong;Sang, Huiyan
- 通讯作者:Sang, Huiyan
Autologistic network model on binary data for disease progression study
- DOI:10.1111/biom.13111
- 发表时间:2019-09
- 期刊:
- 影响因子:1.9
- 作者:Yei Eun Shin;H. Sang;Dawei Liu;T. Ferguson;P. Song
- 通讯作者:Yei Eun Shin;H. Sang;Dawei Liu;T. Ferguson;P. Song
Smoothed Full-Scale Approximation of Gaussian Process Models for Computation of Large Spatial Datasets
用于计算大型空间数据集的高斯过程模型的平滑满尺度逼近
- DOI:10.5705/ss.202017.0008
- 发表时间:2019
- 期刊:
- 影响因子:1.4
- 作者:Zhang, Bohai;Sang, Huiyan;Huang, Jianhua Z.
- 通讯作者:Huang, Jianhua Z.
Quantitative Evaluation of Key Geological Controls on Regional Eagle Ford Shale Production Using Spatial Statistics
利用空间统计对区域 Eagle Ford 页岩生产关键地质控制进行定量评价
- DOI:10.2118/185025-pa
- 发表时间:2018
- 期刊:
- 影响因子:2.1
- 作者:Tian, Yao;Ayers, Walter B.;Sang, Huiyan;McCain, William D.;Ehlig-Economides, Christine
- 通讯作者:Ehlig-Economides, Christine
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huiyan Sang其他文献
Nonparametric Machine Learning for Stochastic Frontier Analysis: A Bayesian Additive Regression Tree Approach
用于随机前沿分析的非参数机器学习:贝叶斯加性回归树方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.9
- 作者:
Zheng Wei;Huiyan Sang;Nene Coulibaly - 通讯作者:
Nene Coulibaly
Huiyan Sang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huiyan Sang', 18)}}的其他基金
ATD: Statistical Modeling of Spatial Temporal Human Mobility Flows from Aggregated Mobile Phone Data
ATD:根据聚合的移动电话数据对时空人类移动流进行统计建模
- 批准号:
2220231 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
High-Dimensional Nonstationary Processes for Spatial Analysis and Machine Learning
用于空间分析和机器学习的高维非平稳过程
- 批准号:
2210456 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Bayesian and Regularization Methods for Spatial Homogeneity Pursuit with Large Datasets
大数据集空间均匀性追求的贝叶斯和正则化方法
- 批准号:
1854655 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Statistical Modeling and Computation of Extreme Values in Large Datasets
大数据集中极值的统计建模和计算
- 批准号:
1622433 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: EARS: Large-Scale Statistical Learning based Spectrum Sensing and Cognitive Networking
合作研究:EARS:基于大规模统计学习的频谱感知和认知网络
- 批准号:
1343155 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
A new approach of statistical modeling and analysis of massive spatial data sets
海量空间数据集统计建模与分析的新方法
- 批准号:
1007618 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
- 批准号:
2339353 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
- 批准号:
DP240101511 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Discovery Projects
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
- 批准号:
EP/Z531327/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
- 批准号:
MR/Z503770/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
- 批准号:
2342821 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
- 批准号:
DP240100143 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Discovery Projects