Bayesian and Regularization Methods for Spatial Homogeneity Pursuit with Large Datasets

大数据集空间均匀性追求的贝叶斯和正则化方法

基本信息

  • 批准号:
    1854655
  • 负责人:
  • 金额:
    $ 22.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Spatial data arises from the research of diverse disciplines such as agricultural, geological, economic and social sciences. In many application problems, practitioners are interested in studying the associations between spatial responses and a set of explanatory variables. With the increasing availability of big spatial data, there is a great need to investigate the spatially varying patterns in such associations. In particular, detecting clustering patterns in spatial relations is desired since it allows practitioners to have straightforward interpretations of local associations. In this project, the PI will develop new statistical models and efficient computation algorithms for spatial homogeneity pursuit with both strong theoretical flavor and realistic practical considerations. The overall approach is interdisciplinary in nature. It integrates the advancements in statistics, machine learning, computation, and geosciences. In this project, the PI will consider a varying coefficient regression model to study the clustered relationship between responses and covariates. In particular, tree-based regularization methods will be developed to encourage spatial homogeneity between regression coefficients at neighboring locations. The PI will design both penalized optimizations and Bayesian MCMC algorithms to implement the proposed models. The performance of the proposed methods will be tested with simulation studies and applied to real-life applications. The PI will also study theoretical properties concerning the behavior of the regularization methods by combining the approximation theory of piecewise constant functions, combinatorial and algebraic graph theory, and high dimensional asymptotic theories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
空间数据产生于农业、地质、经济和社会科学等不同学科的研究。在许多应用问题中,从业者感兴趣的是研究空间反应和一组解释变量之间的关联。随着大空间数据可用性的增加,有一个很大的需要,以调查在这种关联的空间变化模式。特别是,需要检测空间关系中的聚集模式,因为它允许从业者对本地关联进行直接解释。在这个项目中,PI将开发新的统计模型和有效的计算算法,用于空间均匀性追求,具有强烈的理论味道和现实的实际考虑。总体方法是跨学科性质的。它集成了统计学,机器学习,计算和地球科学的进步。在本项目中,PI将考虑变系数回归模型,以研究响应和协变量之间的聚类关系。 特别是,将开发基于树的正则化方法,以鼓励相邻位置的回归系数之间的空间均匀性。PI将设计惩罚优化和贝叶斯MCMC算法来实现所提出的模型。所提出的方法的性能将进行测试与模拟研究,并应用到现实生活中的应用。PI还将结合分段常数函数的近似理论、组合和代数图论以及高维渐近理论来研究正则化方法的理论特性。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T-LoHo: A Bayesian Regularization Model for Structured Sparsity and Smoothness on Graphs
T-LoHo:图上结构化稀疏性和平滑性的贝叶斯正则化模型
Why the Rich Get Richer? On the Balancedness of Random Partition Models
  • DOI:
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changwoo J. Lee-;H. Sang
  • 通讯作者:
    Changwoo J. Lee-;H. Sang
A Bayesian Contiguous Partitioning Method for Learning Clustered Latent Variables
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Luo;H. Sang;B. Mallick
  • 通讯作者:
    Z. Luo;H. Sang;B. Mallick
A binary hidden Markov model on spatial network for amyotrophic lateral sclerosis disease spreading pattern analysis
  • DOI:
    10.1002/sim.8956
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Yei Eun Shin;Dawei Liu;H. Sang;T. Ferguson;P. Song
  • 通讯作者:
    Yei Eun Shin;Dawei Liu;H. Sang;T. Ferguson;P. Song
Park Characteristics and Changes in Park Visitation before, during, and after COVID-19 Shelter-in-Place Order
  • DOI:
    10.3390/su14063579
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Ding, Yizhen;Li, Dongying;Sang, Huiyan
  • 通讯作者:
    Sang, Huiyan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huiyan Sang其他文献

Nonparametric Machine Learning for Stochastic Frontier Analysis: A Bayesian Additive Regression Tree Approach
用于随机前沿分析的非参数机器学习:贝叶斯加性回归树方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Zheng Wei;Huiyan Sang;Nene Coulibaly
  • 通讯作者:
    Nene Coulibaly

Huiyan Sang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huiyan Sang', 18)}}的其他基金

ATD: Statistical Modeling of Spatial Temporal Human Mobility Flows from Aggregated Mobile Phone Data
ATD:根据聚合的移动电话数据对时空人类移动流进行统计建模
  • 批准号:
    2220231
  • 财政年份:
    2023
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Standard Grant
High-Dimensional Nonstationary Processes for Spatial Analysis and Machine Learning
用于空间分析和机器学习的高维非平稳过程
  • 批准号:
    2210456
  • 财政年份:
    2022
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Standard Grant
ATD: A Statistical Geo-Enabled Dynamic Human Network Analysis
ATD:统计地理支持的动态人类网络分析
  • 批准号:
    1737885
  • 财政年份:
    2017
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Continuing Grant
Statistical Modeling and Computation of Extreme Values in Large Datasets
大数据集中极值的统计建模和计算
  • 批准号:
    1622433
  • 财政年份:
    2016
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: EARS: Large-Scale Statistical Learning based Spectrum Sensing and Cognitive Networking
合作研究:EARS:基于大规模统计学习的频谱感知和认知网络
  • 批准号:
    1343155
  • 财政年份:
    2014
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Standard Grant
A new approach of statistical modeling and analysis of massive spatial data sets
海量空间数据集统计建模与分析的新方法
  • 批准号:
    1007618
  • 财政年份:
    2010
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Continuing Grant

相似海外基金

Condensation and Prediction Acceleration for Deep Learning Through Low-rank Regularization and Adaptive Proximal Methods
通过低秩正则化和自适应近端方法进行深度学习的压缩和预测加速
  • 批准号:
    23K19981
  • 财政年份:
    2023
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2022
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Discovery Grants Program - Individual
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2021
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Discovery Grants Program - Individual
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2020
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Discovery Grants Program - Individual
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2019
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Error Measures and Source Conditions of Regularization Methods for Inverse Problems (SCIP)
反问题正则化方法的新颖误差测量和来源条件(SCIP)
  • 批准号:
    391100538
  • 财政年份:
    2018
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Research Grants
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2018
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods in Dimensional Regularization Applied to QCD Sum-Rules
应用于 QCD 求和规则的维数正则化数值方法
  • 批准号:
    512738-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 22.64万
  • 项目类别:
    University Undergraduate Student Research Awards
Regularization methods in Banach spaces for inverse scattering problems
Banach 空间中逆散射问题的正则化方法
  • 批准号:
    247299886
  • 财政年份:
    2013
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Research Grants
Regularization Methods in High Dimensions with Applications to Functional Data Analysis, Mixed Effects Models and Classification
高维正则化方法及其在函数数据分析、混合效应模型和分类中的应用
  • 批准号:
    0906784
  • 财政年份:
    2009
  • 资助金额:
    $ 22.64万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了