Statistical Modeling and Computation of Extreme Values in Large Datasets
大数据集中极值的统计建模和计算
基本信息
- 批准号:1622433
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Numerous problems in environmental, earth, and biological sciences nowadays involve large amounts of spatial data, obtained from remote ground sensors, satellite images, geographic information systems, and public health sources, etc. Analysis of extreme values is of particular interests in many such applications. For instance, natural hazardous events such as severe tides, heat waves, heavy rainfalls, and extreme air pollution events can cause substantial damages in our society. The goal of this project is to better understand spatially dependent extreme events for efficient quantitative risk management. The project has a broad impact on multiple interdisciplinary fields including statistics, geoscience, environmental science, operations research, machine learning, and risk management. The modeling and computational approaches for extreme value analysis and prediction in big data can be applied to a wide range of practical and important problems including extreme climate change studies, environmental hazardous event analysis, insurance risk assessments, and agriculture planning.Extreme events are rare events by definition. Until recently, analysis of spatial extreme values starts to become feasible, thanks to the availability of big spatial data, which provides great opportunities to accurately quantify the risk of extreme events, better understand the links among extreme events, promptly monitor changes in the frequency and intensity of extreme events, and reliably predict extreme values at unobserved locations. However, such big data sizes also impose challenges for statistical modeling and computation. The objective of this project is to combine theoretical methods and computational approaches to develop novel models, along with inference and prediction algorithms, to meet the increasing demand of efficient analytical tools for extreme values in big data. In particular, the project will focus on the following research thrusts. First, a new class of nonstationary max-stable process models will be developed with flexible and desirable dependence structures for high-dimensional spatial extreme values. Then new scalable and parallelizable inference tools will be proposed for the estimation of the proposed nonstationary max-stable process models. Afterwards, divide-and-conquer conditional sampling algorithms will be studied for the prediction of extremes over large spatial data, which provides both point estimations and uncertainty measures for the predicted values at unobserved locations. Finally, the developed method will be applied to solve real problems.
当今环境、地球和生物科学中的许多问题都涉及大量的空间数据,这些数据来自地面遥感器、卫星图像、地理信息系统和公共卫生资源等。在许多这样的应用中,极值分析是特别重要的。例如,自然灾害事件,如严重的潮汐,热浪,重金属和极端的空气污染事件可能会对我们的社会造成重大损害。该项目的目标是更好地了解空间依赖的极端事件,以便进行有效的定量风险管理。该项目对多个跨学科领域产生了广泛的影响,包括统计学,地球科学,环境科学,运筹学,机器学习和风险管理。大数据中的极值分析和预测的建模和计算方法可以应用于广泛的实际和重要问题,包括极端气候变化研究,环境危害事件分析,保险风险评估和农业规划。直到最近,由于大空间数据的可用性,空间极值分析开始变得可行,这为准确量化极端事件的风险,更好地了解极端事件之间的联系,及时监测极端事件频率和强度的变化,以及可靠地预测未观测到的极端值提供了很好的机会。然而,这种大数据规模也给统计建模和计算带来了挑战。该项目的目标是将联合收割机理论方法和计算方法结合起来,开发新的模型,沿着推理和预测算法,以满足对大数据中极值的高效分析工具日益增长的需求。特别是,该项目将侧重于以下研究重点。首先,一类新的非平稳最大稳定过程模型将开发灵活和理想的高维空间极值的依赖结构。然后,新的可扩展性和并行推理工具将提出拟议的非平稳最大稳定过程模型的估计。然后,将研究分治条件采样算法,用于预测大型空间数据的极端值,该算法为未观测位置的预测值提供点估计和不确定性度量。最后,将所开发的方法应用于解决真实的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huiyan Sang其他文献
Nonparametric Machine Learning for Stochastic Frontier Analysis: A Bayesian Additive Regression Tree Approach
用于随机前沿分析的非参数机器学习:贝叶斯加性回归树方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.9
- 作者:
Zheng Wei;Huiyan Sang;Nene Coulibaly - 通讯作者:
Nene Coulibaly
Huiyan Sang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huiyan Sang', 18)}}的其他基金
ATD: Statistical Modeling of Spatial Temporal Human Mobility Flows from Aggregated Mobile Phone Data
ATD:根据聚合的移动电话数据对时空人类移动流进行统计建模
- 批准号:
2220231 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
High-Dimensional Nonstationary Processes for Spatial Analysis and Machine Learning
用于空间分析和机器学习的高维非平稳过程
- 批准号:
2210456 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Bayesian and Regularization Methods for Spatial Homogeneity Pursuit with Large Datasets
大数据集空间均匀性追求的贝叶斯和正则化方法
- 批准号:
1854655 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
ATD: A Statistical Geo-Enabled Dynamic Human Network Analysis
ATD:统计地理支持的动态人类网络分析
- 批准号:
1737885 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: EARS: Large-Scale Statistical Learning based Spectrum Sensing and Cognitive Networking
合作研究:EARS:基于大规模统计学习的频谱感知和认知网络
- 批准号:
1343155 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
A new approach of statistical modeling and analysis of massive spatial data sets
海量空间数据集统计建模与分析的新方法
- 批准号:
1007618 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: : Mathematical modeling and computation of morphological instabilities in reactive fluids driven out of equilibrium
合作研究::失去平衡的反应流体形态不稳定性的数学建模和计算
- 批准号:
2309799 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: : Mathematical modeling and computation of morphological instabilities in reactive fluids driven out of equilibrium
合作研究::失去平衡的反应流体形态不稳定性的数学建模和计算
- 批准号:
2309798 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
- 批准号:
2306992 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: : Mathematical modeling and computation of morphological instabilities in reactive fluids driven out of equilibrium
合作研究::失去平衡的反应流体形态不稳定性的数学建模和计算
- 批准号:
2309800 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
- 批准号:
2306991 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
GOALI: CNS: Medium: Communication-Computation Co-Design for Rural Connectivtiy and Intelligence under Nonuniformity: Modeling, Analysis, and Implementation
目标:CNS:媒介:非均匀性下农村互联和智能的通信计算协同设计:建模、分析和实现
- 批准号:
2212565 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Topological and Geometric Modeling and Computation of Structures and Functions in Single-Cell Omics Data
单细胞组学数据中结构和功能的拓扑和几何建模及计算
- 批准号:
2151934 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Modeling, Analysis, Optimization, Computation, and Applications of Stochastic Systems
随机系统的建模、分析、优化、计算和应用
- 批准号:
2204240 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
- 批准号:
RGPIN-2016-05306 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Modeling, Mathematical Analysis, and Computation of Multiscale Systems
多尺度系统的建模、数学分析和计算
- 批准号:
DP200103097 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Discovery Projects














{{item.name}}会员




